The influence of vitamin D on cancer: an integrative review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i1.11388

Keywords:

Oncology; Neoplasm; Calcitriol; Prevention of diseases.

Abstract

Theoretical framework: cancer is a group of more than one hundred diseases, of which have intrinsic and/or extrinsic factors, modifiable and non-modifiable for its onset. Vitamin D, in turn, is a steroid hormone that has its biological actions mediated by the vitamin D receptor, consequently developing roles related to the control of cell growth, differentiation and proliferation, in which, the administration of its active metabolites or analogues can result in inhibition of angiogenesis, delegating effects antiproliferative and activation of apoptotic mechanisms. Objective: Present the influence of vitamin D action on cancers that affect the gastrointestinal tract and distinct organs. Methodology: It is an integrative review, with a qualitative approach. Based on research on BVS and PubMed databases, 19 articles were selected that were consistent with the theme and the inclusion and exclusion criteria, through the association of descriptors and keywords. Results: 84.62% and 71.43% of the studies demonstrated a positive correlation of vitamin D in the anti-carcinogenesis process of cancers that affect the gastrointestinal tract and different organs, respectively. The carcinogenesis process can be influenced by vitamin D deficiency, polymorphisms in the vitamin D receptor gene and other changes and relationships with underlying pathways. Conclusion: This study highlights the positive influence of vitamin D in the prevention of carcinogenesis that affects the gastrointestinal tract and different organs.

References

Albanes, D. (2015). Vitamin D and cancer: Diversity, complexity, and still a ways to go. Cancer Prevention Research, 8(8), 657–661. doi: 10.1158/1940-6207.CAPR-15-0207

Brasil. Ministério da Saúde. Instituto Nacional do Câncer José Alencar Gomes da Silva (INCA). (2020). ABC do câncer: abordagens básicas para o controle do câncer / Instituto Nacional (6ª ed.). Rio de Janeiro: INCA. Recuperado de https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//livro-abc-6-edicao-2020.pdf

Bray, F., Ferlay, J., Soerjomataram, I, Siegel, R. L., Torre, L. A., & Jernal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. doi: https://doi.org/10.3322/caac.21492

Chen, L., Yang, R., Qiao, W., Yuan, S., Goltzman, D., & Miao, D. (2018). 1,25-Dihydroxy vitamin D prevents tumorigenesis by inhibiting oxidative stress and inducing tumor cellular senescence in mice. International Journal of Cancer, 143(2), 368–382. doi: https://doi.org/10.1002/ijc.31317

Christakos, S., Dhawan, P., Verstuyf, A., Verlinden, L. & Carmeliet, G. (2015). Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiological Reviews, 96(1), 365-408. doi: https://doi.org/10.1152/physrev.00014.2015

Deeb, K. K., Trump, D. L. & Johnson, C. S. (2007). Vitamin D signalling pathways in cancer: Potential for anticancer therapeutics. Nature Reviews Cancer, 7(9), 684–700. doi: https://doi.org/10.1038/nrc2196

Eliassen, A. H., Warner, E. T., Rosner, B., Collins, L. C., Beck, A. H., Quintana, L. M., ... Hankinson, S. E. (2016). Plasma 25-Hydroxyvitamin D and Risk of Breast Cancer in Women Followed over 20 Years. Cancer Research, 76(18), 5423–5430. doi: https://doi.org/10.1158/0008-5472.can-16-0353

El-Sharkawy, A. & Malki, A. (2020). Vitamin D signaling in inflammation and cancer: Molecular mechanisms and therapeutic implications. Molecules, 25(14), 1-31. doi: https://doi.org/10.3390/molecules25143219

Eom, S. Y., Yim, D.H., Kim, D. H., Yun, H. Y.., Song, Y. J., Youn, S., ... Kim, H. (2018). Dietary vitamin D intake and vitamin D related genetic polymorphisms are not associated with gastric cancer in a hospital-based case-control study in Korea. Journal of Biomedical Research, 32(4), 257-263. doi: https://doi.org/10.7555/JBR.32.20170089

Haznadar, M., Krausz, K. W., Margono, E., Diehl, C. M., Bowman, E. D., Manna, S. k., ... Harris, C. C. (2018). Inverse association of vitamin D3 levels with lung cancer mediated by genetic variation. Cancer Medicine, 7(6), 2764–2775. doi: https://doi.org/10.1002/cam4.1444

Holick, M. F. (2007). Medical progress: Vitamin D deficiency. New England Journal of Medicine, 357(3), 266-281. doi: https://doi.org/10.1056/NEJMra070553

Horas, K., Zheng, Y., Fong-Yee, C., Macfarlane, E., Manibo, J., Chen, Y., ... Seibel, M. J. (2019). Loss of the Vitamin D Receptor in Human Breast Cancer Cells Promotes Epithelial to Mesenchymal Cell Transition and Skeletal Colonization. Journal of Bone and Mineral Research, 34(9), 1721–1732. doi: https://doi.org/10.1002/jbmr.3744

Kim, J. S., Jung, M., Yoo, J., Choi, E. H., Park, B. C., Kim, M. H., & Hong, S. P. (2016). Protective effect of topical Vitamin D3 against photocarcinogenesis in a murine model. Annals of Dermatology, 28(3), 304–313. doi: https://doi.org/10.5021/ad.2016.28.3.304

Kwak, J. H. & Paik, J. K. (2020). Vitamin D Status and Gastric Cancer: A Cross-Sectional Study in Koreans. Nutrients, 12(7), 1-9. doi: https://doi.org/10.3390/nu12072004

Makarova, A. M., Fracari, F., Davari, P., Gorouhi, F., Dutt, P., Wang, L., ... Epstein Jr, E. H. (2018). Ultraviolet radiation inhibits mammary carcinogenesis in an ER-negative murine model by a mechanism independent of Vitamin D3. Cancer Prevention Research, 11(7), 383–391. doi: https://doi.org/10.1158/1940-6207.CAPR-17-0195

Margolis, R. N. & Christakos, S. (2010). The nuclear receptor superfamily of steroid hormones and vitamin D gene regulation: An update. Annals of the New York Academy of Sciences, 1192, 208–214. doi: https://doi.org/10.1111/j.1749-6632.2009.05227.x

McCullough, M. L., Zoltick, E. S., Weinstein, S. J., Fedirko, V., Wang, M., Cook, N. R., ... Smith-Warner, S. A. (2019). Circulating Vitamin D and colorectal cancer risk: An international pooling project of 17 cohorts. Journal of the National Cancer Institute, 111(2), 158–169. doi: https://doi.org/10.1093/jnci/djy087

Messaritakis, I., Koulouridi, A., Sfakianaki, M., Vogiatzoglou, K., Gouvas, N., Athanasakis, E., ... Souglakos, J. (2020). The role of vitamin D receptor gene polymorphisms in colorectal cancer risk. Cancers, 12(6), 1–16. doi: https://doi.org/10.3390/cancers12061379

Orlow, I., Reiner, A. S., Thomas, N. E., Roy, P., Kanetsky, P. A., Luo, L., ... Berwick, M. (2016). Vitamin D receptor polymorphisms and survival in patients with cutaneous melanoma: A population-based study. Carcinogenesis, 37(1), 30–38. doi: https://doi.org/10.1093/carcin/bgv157

Park, S. M., Li, T., Wu, S., Li, W. Q., Qureshi, A. A., & Cho, E. (2016). Vitamin D intake and risk of skin cancer in US women and men. PLoS ONE, 11(8), 1–14. doi: https://doi.org/10.1371/journal.pone.0160308

Pereira, A. S., Shitsuka, D. M., Pereira, F. J., & Shitsuka, R. (Orgs.) (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Schöttker, B., Jorde, R. Peasey, A., Thorand, B., Jansen, E. H. J. M., Groot, L., ... Brenner, H. (2014). Vitamin D and mortality: Meta-analysis of individual participant data from a large consortium of cohort studies from Europe and the United States. BMJ, 348, 1–15. doi: https://doi.org/10.1136/bmj.g3656

Spath, L., Ulivieri, A., Lavra, L., Fidanza, L., Carlesimo, M., Giubettini, ... Bartolazzi, A. (2017). Antiproliferative Effects of 1α-OH-vitD 3 in Malignant Melanoma: Potential Therapeutic implications. Scientific Reports, 7(1), 1–12. doi: https://doi.org/10.1038/srep40370

Souza, M. T., Silva, M. D. D. & Carvalho, R. D. (2010). Revisão integrativa: o que é e como fazer. Einstein, 8(1), 102-6. doi: https://doi.org/10.1590/s1679-45082010rw1134

Suksawatamnuay, S., Sriphoosanaphan, S., Aumpansub, P., Aniwan, S., Thanapirom, K., Tanasanvimon, S., ... Komolmit, P. (2020). Association between Vitamin D Receptor Single-Nucleotide Polymorphisms and Colorectal Cancer in the Thai Population: A Case-Control Study. BioMed Research International, 1-9. doi: https://doi.org/10.1155/2020/7562958

Tian, X. Q., Chen, T. C., Matsuoka, L. Y., Wortsman, J., & Holick, M. F. (1993). Kinetic and thermodynamic studies of the conversion of previtamin D3 to vitamin D3 in human skin. Journal of Biological Chemistry, 268(20), 14888-14892. Recuperado de https://www.jbc.org/content/268/20/14888.long

Verma, A., Vincent-Chong, V. K., Dejong, H., Gershberger, P. A., & Sashadri, M. (2020). Impact of dietary vitamin D on initiation and progression of oral cancer. Journal of Steroid Biochemistry and Molecular Biology, 199, 105603. doi: https://doi.org/10.1016/j.jsbmb.2020.105603

Vincent-Chong, V. K., DeJong, H., Attwood, K., Hershberger, P. A. & Seshadri, M. (2019). Preclinical Prevention Trial of Calcitriol: Impact of Stage of Intervention and Duration of Treatment on Oral Carcinogenesis. Neoplasia, 21(4), 376–388. doi: https://doi.org/10.1016/10.1016/j.neo.2019.02.002

Wacker, M. & Holick, M. F. (2013). Sunlight and Vitamin D: A global perspective for health. Dermato-Endocrinology, 5(1), 51-108. doi: https://doi.org/10.1016/10.4161/derm.24494

Xin, Y., He, L., Phil, M., Luan, Z., Lv, H., Yang, H., ... Qian, J. (2017). E-cadherin Mediates the Preventive Effect of Vitamin D 3 in Colitis-associated Carcinogenesis. Inflammatory Bowel Diseases, 23(9), 1535–1543. doi: https://doi.org/10.1097/MIB.0000000000001209

Yang, L., Chen, H., Zhao, M. & Peng, P. (2017). Prognostic value of circulating vitamin D binding protein, total, free and bioavailable 25-hydroxy vitamin D in patients with colorectal cancer. Oncotarget, 8(25), 40214–40221. doi: https://doi.org/10.18632/oncotarget.16597

Zella, L. A., Kim, S., Shevde, N. K., & Pike, J. W. (2006). Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Molecular Endocrinology, 20(6), 1231–1247. doi: https://doi.org/10.1210/me.2006-0015

Zhang, Y. G., Lu, R., Wu, S., Chatterjee, I., Zhou, D., Xia, Y., & Sun, J. (2020). Vitamin D Receptor Protects Against Dysbiosis and Tumorigenesis via the JAK/STAT Pathway in Intestine. Cellular and Molecular Gastroenterology and Hepatology, 10(4), 1–18. doi: https://doi.org/10.1016/j.jcmgh.2020.05.010

Published

04/01/2021

How to Cite

SOUZA, M. C. de; COSER, M. P. The influence of vitamin D on cancer: an integrative review. Research, Society and Development, [S. l.], v. 10, n. 1, p. e9610111388, 2021. DOI: 10.33448/rsd-v10i1.11388. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11388. Acesso em: 19 jan. 2021.

Issue

Section

Health Sciences