Is AMF inoculation an alternative to maximize the in vitro antibacterial activity of Libidibia ferrea extracts?




Arbuscular mycorrhizal fungi; Bacterial growth; Biocompounds; Caatinga; Fruits; Mycorrhization.


Arbuscular mycorrhizal fungi (AMF) are known to provide plant species with several benefits, such as an increased production of bioactive compounds. However, it is yet to be defined whether extracts of mycorrhizal plants are more efficient in vitro antibacterial actions when compared to non-mycorrhizal plants. We tested the hypothesis of whether or not, methanolic extracts of Libidibia ferrea fruits, from plants established in the field and inoculated with AMF, have higher antibacterial action when inoculated with Acaulospora longula, Claroideoglomus etunicatum or Gigaspora albida. In addition, native L. ferrea fruits collected from the Caatinga area were also tested. The extracts of L. ferrea fruits inoculated with A. longula had higher in vitro antibacterial action in relation to the extracts of fruits from non-inoculated plants (p <0.05) thus characterizing the first record of different antibacterial actions of plant extracts due to inoculation with AMF. The extracts of L. ferrea fruits inoculated with A. longula were more efficient in inhibiting growth of Gram-negative bacteria. The zone diameters of inhibition ranged from 2.48 % to 7.56 % larger than the zones of the non-inoculated L. ferrea fruit extracts. The inoculation of L. ferrea with AMF may represent an alternative way of producing fruits with different antibacterial activity.


Almeida, C. L., Sawaya, A. C. H. F., & Andrade, S. A. L. (2018). Mycorrhizal influence on the growth and bioactive compounds composition of two medicinal plants: Mikania glomerata Spreng. and Mikania laevigata Sch. Bip. ex Baker (Asteraceae). Brazilian Journal of Botany, 41, 233-240.

Amiri, R., Nikbakht, A., Rahimmalek, M., & Hosseini, H. (2017). Variation in the essential oil composition, Antioxidant capacity, and physiological characteristics of Pelargonium graveolens L. inoculated with two species of mycorrhizal fungi under water deficit conditions. Journal of Plant Growth Regulation, 36, 502-515.

Araújo, T. A. S., Alencar, N. L., Amorim, E. L. C., & Albuquerque, U. P. (2008). A new approach to study medicinal plants with tannnis and flavonoids contentes from the local knowledge. Journal of Ethnopharmacology, 120, 72-80.

Araújo, A. A., Soares, L. A. L., Ferreira, M. R. A., Souza Neto, M. A., Silva, G. R., Araújo Jr, R. F., & Melo, M. C. N. (2014). Quantification of polyphenols and evaluation of antimicrobial, analgesic and anti-inflammatory activities of aqueous and acetone–water extracts of Libidibia ferrea, Parapiptadenia rigida and Psidium guajava. Journal of Ethnopharmacology, 156, 88-96.

Biasi-Garbin, R. P., Demitto, F. O., Amaral, R. C. R., Ferreira, M. R. A., Soares, L. A., Svidzinski, T. I. E., & Yamada-Ogatta, S. F. (2016). Antifungal potential of plant species from brazilian caatinga against dermatophytes. Revista do Instituto de Medicina Tropical de São Paulo, 58: 18.

Braquehais, I. D., Vasconcelos, F. R., Ribeiro, A. R. C., Silva, A. R. A., Franca, M. G. A., Lima, D. R., & Magalhães, F. E. A. (2016). Estudo preliminar toxicológico, antibacteriano e fitoquímico do extrato etanólico das folhas de Jatropha mollissima (Pohl) Baill. (pinhão-bravo, Euphorbiaceae), coletada no Município de Tauá, Ceará, Nordeste Brasileiro. Revista Brasileira de Plantas Medicinais, 18, 582-587.

Behrends, V., Maharjan, R. P., Ryall, B., Feng, L., Liu, B., Wang, L., & Ferenci, T. (2014). A metabolic trade-off between phosphate and glucose utilization in Escherichia coli. Molecular BioSystems,10, 2820-2822.

Brito, H. O., Noronha, E. P., França, L. M., Brito, L. M. O., & Prado, M. S. (2008). Análise da composição fitoquímica do extrato etanólico das folhas de Annona squamosa (ATA). Revista Brasileira de Farmacognosia, 89, 180-184.

Clinical and Laboratory Standards Institute –CLSI (2012) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard. (9th ed.). CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute.

Clinical and Laboratory Standards Institute –CLSI (2018). Performance Standards for Antimicrobial Susceptilibity testing. (28th ed.). M100, USA.

Conde, N. C. O., Pereira, M. S. V., Bandeira, M. F. C. L., Venâncio, G. N., Oliveira, G. P., & Sampaio, F. C. (2015). In vitro antimicrobial activity of plants of the Amazon on oral biofilm microrganisms. Revista Odonto Ciência, 30, 179-183.

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356.

Ferreira, M. R. A., Fernandes, M. T. M., Silva, W. A. V., Bezerra, I. C. F., Souza, T. P., Pimentel, M. F. & Soares, L. A. L. (2016). Chromatographic and spectrophotometric analysis of phenolic compounds from fruits of Libidibia ferrea Martius. Pharmacognosy Magazine, 12, 285-291.

Giovannetti, M., Avio, L., Barale, R., Ceccarelli, N., Cristofani, R., & Iezzi, A. (2012). Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. British Journal of Nutrition, 107, 242-251.

Karimi, K., Aharia, A. B., Weisany, W., Pertot, I., Vrhovsek, U., & Arzanlou, M. (2016). Funneliformis mosseae root colonization affects Anethum graveolens essential oil composition and its efficacy against Colletotrichum nymphaeae. Industrial Crops and Products, 90, 126-134.

Lima, C. S., Campos, M. A. S., & Silva, F. S. B. (2015). Mycorrhizal fungi (AMF) increase the content of biomolecules in leaves of Inga vera Willd. seedlings. Symbiosis, 65, 117-123.

Monteiro, J. M., Albuquerque, U. P., Lins Neto, E. M. F., Araújo, E. L., Albuquerque, M. M., & Amorim, E. L. C. (2006). The effects of seasonal climate changes in the Caatinga on tannin levels in Myracrodruon urundeuva (Engl.) Fr. All. and Anadenanthera colubrina (Vell.) Brenan. Brazilian Journal of Pharmacognosy, 16, 338-344.

Nakamura, E. S., Kurosaki, F., Arisawa, M., Mukainaka, T., Okuda, M., Tokuda, H., & Pastore Junior, F. et al. (2002). Cancer chemopreventive effects of constituints of Caesalpinia ferrea and related compounds. Cancer Letters, 177, 119-124.

Nascimento, P. L. A., Nascimento, T. C. E. S., Gomes, J. E. G., Silva, M. D. S., Souza, S. A., Silva, T. M. S., & Moreira, K. A. (2015). Antioxidant and antimicrobial properties of ethanolic extract of Libidibia ferrea pods. Revista Fitos, 9, 161-252.

Oliveira, P. T. F., Alves, G. D., Silva, F. A., & Silva, F. S. B. (2015). Foliar bioactive compounds in Amburana cearensis (Allemao) A. C. Smith seedlings: Increase of biosynthesis using mycorrhizal technology. Journal of Medicinal Plants Research, 9, 712- 718.

Okuda, T. (2005). Systematics and health effects of chemically distinct tannins in medicinal plants. Phytochemistry, 66, 2012-2031.

Okuda, T., & Ito, H. (2011). Tannins of constant structure in medicinal and food plants-Hydrolyzable Tannins and Polyphenols Related to Tannins. Molecules, 16, 2191-2217.

Oliveira, G. P., Souza, T. P., Caetano, S. K., Farias, K. S., Venâncio, G. N., Bandeira, M. F. C. L., & Conde, N. C. O. (2015). Antimicrobial activity in vitro extrats of the stem bark and fruit of Libidibia ferrea L. against microrganisms of the oral cavity. Revista Fitos, 8, 73-160.

Orujei, Y., Shabani, L., & Sharifi-Tehrani, M. (2013). Induction of glycyrrhizin and total phenolic compound production in licorice by using arbuscular mycorrhizal fungi. Russian Journal of Plant Physiology, 60, 855-860.

Pedone-Bonfim, M. V. L., Lins, M. A., Coelho, I. R., Santana, A. S., Silva, F. S. B., & Maia, L. C. (2013). Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina (Vell.) Brenan) seedlings. Journal of the Science of Food and Agriculture, 93, 1479–84.

Queiroz, C. R., Morais, A. L., & Nascimento, E. A. (2002). Caracterização dos taninos da aroeira-preta (Myracrodruon urundeuva). Revista Árvore, 26, 485-492.

Rice, L. B. (2018). Antimicrobial stewardship and antimicrobial resistance. Medical Clinics of North America, 102, 805-818.

Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2007). Metodologia Científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Comunicado Técnico,127, EMBRAPA 1-4

Santos, E. L., Silva, F. A., & Silva, F. S. B. (2017). Arbuscular mycorrhizal fungi increase the phenolic compounds concentration in the bark of the stem of Libidibia ferrea in field conditions. The Open Microbiology Journal, 11, 283-291.

Santos, E. L., Silva, W. A. V., Ferreira, M. R. A., Soares, L. A., Sampaio, E. V. S. B., Silva F. A, & Silva, F. S. B. (2020). Acaulospora longula increases the content of phenolic compounds and antioxidant activity in fruits of Libidibia ferrea. The Open Microbiology Journal, 14, 132-139.

Sampaio, F. C., Pereira, M. S. V., Dias, C. S., Costa, V. C., Conde, N. C. O., & Buzala, M. A. R. (2009). In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens. Journal of Ethnopharmacology, 124, 289-294.

Shimizu, K. (2014). Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites, 4, 1-35.

Silva, L. C. N., Sandes, J. M., Paiva, M. M., Araújo, J. M., Figueiredo, R. C. B. Q., Silva, M. V., & Correia, M. T. S. (2013a). Anti-Staphylococcus aureus action of three Caatinga fruits evaluated by electron microscopy. Natural Product Research, 27, 1492-6.

Silva, L. C. N., Miranda, R. C. M., Gomes, E. B., Macedo, A. J., Araújo, J. M., Figueiredo, R. C. B. Q., & Correia, M. T. S. (2013b), Evaluation of combinatory effects of Anadenanthera colubrina, Libidibia ferrea and Pityrocarpa moniliformis fruits extracts and erythromycin against Staphylococcus aureus. Journal of Medicinal Plants Research, 7, 2358-2364.

Silva, F. A., Silva, F. S. B., & Maia, L. C. (2014a). Biotechnical application of arbuscular mycorrhizal fungi used in the production of foliar biomolecules in ironwood seedlings [Libidibia ferrea (Mart. Ex Tul.) L. P. Queiroz var. ferrea. Journal of Medicinal Plants Research, 8, 814-819.

Silva, F. A., Ferreira, M. R. A., Soares, L. A. L., Sampaio, E. V. S. B., Silva, F. S. B., & Maia, L. C. (2014b). Arbuscular mycorrhizal fungi increase acid gallic production in leaves of field grown Libidibia ferrea (Mart. Ex Tul.) L. P. Queiroz. Journal of Medicinal Plants Research, 8, 1110-1115.

Silva, F. A., & Silva, F. S. B. (2017). Is the application of arbuscular mycorrhizal fungi an alternative to increase foliar phenolic compounds in seedlings of Mimosa tenuiflora (Wild.) Poir., Mimosoideae?. Brazilian Journal of Botany, 40, 361-365.

Tavarini, S., Passera, B., Martini, A., Avio, L., Sbrana, C., Giovannetti, M., & Angelini, L. G. (2018). Plant growth, steviol glycosides and nutrient uptake as affected by arbuscular mycorrhizal fungi and phosphorous fertilization in Stevia rebaudiana Bert. Industrial Crops and Products, 111, 899- 907.

Vigo, C. L. S., Narita, E., & Marques, L. C. (2003). Validação da metodologia de quantificação espectrofotométrica das saponinas de Pfaffia glomerata (Spreng.) Pedersen – Amaranthaceae. Revista Brasileira de Farmacognosia, 13, 46-49.

WHO. (2013). WHO Traticional Medicine Strategy: 2014-2023. WHO Library Catoguing-in-Publication Data

Wu, S., Zhang, X., Chen, B., Wu, Z., Li, T., Hu, Y., & Wang, Y. (2016). Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environmental and Experimental Botany, 122, 10-18.




How to Cite

SANTOS, E. L. dos .; MUNIZ, B. C. .; BARBOSA, B. G. V. .; MORAIS , M. M. C. .; SILVA, F. . A. da .; SILVA, F. S. B. da . Is AMF inoculation an alternative to maximize the in vitro antibacterial activity of Libidibia ferrea extracts?. Research, Society and Development, [S. l.], v. 10, n. 1, p. e10010111435, 2021. DOI: 10.33448/rsd-v10i1.11435. Disponível em: Acesso em: 24 jun. 2021.



Agrarian and Biological Sciences