Biomaterials used in pulp revascularization: literature review




Biocompatible Materials; Angiogenesis inducing agents; Endodontics; Regenerative endodontics; Calcium hydroxide.


Background: for many decades apexification was the recommended treatment for immature permanent teeth with non-vital pulps. Currently, the revitalization of these teeth has been sought through pulp revascularization. This technique allows immature permanent teeth with non-vital pulps to complete root development, and uses biomaterials for this purpose. MTA is a calcium silicate cement, and is currently the most suitable biomaterial for cervical sealing in the pulp revascularization technique, but it has disadvantages. New biomaterials are being developed to try to improve some properties of the MTA. Objective: the aim of this study was to conduct a literature review comparing the physical, chemical and biological properties of MTA with the new biomaterials that are emerging on the market, for use in pulp revascularization. Conclusion: in the literature, the use of biomaterials such as Endosequence and Biodentine was found in pulp revascularization of immature permanent teeth with non-vital pulp, however, to date, there are no randomized clinical studies that prove the advantages of these materials in relation to MTA.


Agrafioti, A., Tzimpoulas, N., Chatzitheodoridis, E., & Kontakiotis, E.G. (2016). Comparative evaluation of sealing ability and microstructure of MTA and Biodentine after exposure to different environments. Clin Oral Investig, 20(7), 1535-1540.

Albuquerque, M. T., Valera, M. C., Nakashima, M., Nör, J. E., & Bottino, M. C. (2014). Tissue-engineering-based strategies for regenerative endodontics. Journal of dental research, 93(12), 1222–1231.

Aly, M. M., Taha, S., El Sayed, M. A., Youssef, R., & Omar, H. M. (2019). Clinical and radiographic evaluation of Biodentine and Mineral Trioxide Aggregate in revascularization of non-vital immature permanent anterior teeth (randomized clinical study). International journal of paediatric dentistry, 29(4), 464–473.

Araújo, P., Silva, L. B., Neto, A., Almeida de Arruda, J. A., Álvares, P. R., Sobral, A., Júnior, S. A., Leão, J. C., Braz da Silva, R., & Sampaio, G. C. (2017). Pulp Revascularization: A Literature Review. The open dentistry journal, 10, 48–56.

Bakland, L. K., & Andreasen, J. O. (2012). Will mineral trioxide aggregate replace calcium hydroxide in treating pulpal and periodontal healing complications subsequent to dental trauma? A review. Dental traumatology: official publication of International Association for Dental Traumatology, 28(1), 25–32.

Bezgin, T., & Sönmez, H. (2015). Review of current concepts of revascularization/revitalization. Dental traumatology: official publication of International Association for Dental Traumatology, 31(4), 267–273.

Bhola, M., Goyal, V., Tyagi, P., & Kumar, T. (2017). Mineral trioxide aggregate-induced apical closure in nonvital immature permanent maxillary incisor. Journal of the Indian Society of Pedodontics and Preventive Dentistry, 35(4), 378–380.

Bortoluzzi, E. A., Niu, L. N., Palani, C. D., El-Awady, A. R., Hammond, B. D., Pei, D. D., Tian, F. C., Cutler, C. W., Pashley, D. H., & Tay, F. R. (2015). Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularization. Dental materials: official publication of the Academy of Dental Materials, 31(12), 1510–1522.

Bukhari, S., Kohli, M. R., Setzer, F., & Karabucak, B. (2016). Outcome of Revascularization Procedure: A Retrospective Case Series. Journal of endodontics, 42(12), 1752–1759.

Camilleri J. (2015). Staining Potential of Neo MTA Plus, MTA Plus, and Biodentine Used for Pulpotomy Procedures. Journal of endodontics, 41(7), 1139–1145.

Carmen, L., Asunción, M., Beatriz, S., & Rosa, Y. V. (2017). Revascularization in Immature Permanent Teeth with Necrotic Pulp and Apical Pathology: Case Series. Case reports in dentistry, 2017, 3540159.

Camilleri J. (2014). Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. Journal of endodontics, 40(3), 436–440.

Chaniotis A. (2017). Treatment Options for Failing Regenerative Endodontic Procedures: Report of 3 Cases. Journal of endodontics, 43(9), 1472–1478.

Chen, I., Karabucak, B., Wang, C., Wang, H. G., Koyama, E., Kohli, M. R., Nah, H. D., & Kim, S. (2015). Healing after root-end microsurgery by using mineral trioxide aggregate and a new calcium silicate-based bioceramic material as root-end filling materials in dogs. Journal of endodontics, 41(3), 389–399.

Damle, S. G., Bhattal, H., & Loomba, A. (2012). Apexification of anterior teeth: a comparative evaluation of mineral trioxide aggregate and calcium hydroxide paste. The Journal of clinical pediatric dentistry, 36(3), 263–268.

De Souza, E. T., Nunes Tameirão, M. D., Roter, J. M., De Assis, J. T., De Almeida Neves, A., & De-Deus, G. A. (2013). Tridimensional quantitative porosity characterization of three set calcium silicate-based repair cements for endodontic use. Microscopy research and technique, 76(10), 1093–1098.

De-Deus, G., Canabarro, A., Alves, G., Linhares, A., Senne, M. I., & Granjeiro, J. M. (2009). Optimal cytocompatibility of a bioceramic nanoparticulate cement in primary human mesenchymal cells. Journal of endodontics, 35(10), 1387–1390.

Diogenes, A., Henry, M. A., Teixeira, F. B., & Hargreaves, K. M. (2013). An update on clinical regenerative endodontics. Endodontic Topics, 28 (1), 2-28.

Hargreaves, K. M., Diogenes, A., & Teixeira, F. B. (2013). Treatment options: biological basis of regenerative endodontic procedures. Journal of endodontics, 39(3 Suppl), S30–S43.

He, L., Zhong, J., Gong, Q., Kim, S. G., Zeichner, S. J., Xiang, L., Ye, L., Zhou, X., Zheng, J., Liu, Y., Guan, C., Cheng, B., Ling, J., & Mao, J. J. (2017). Treatment of Necrotic Teeth by Apical Revascularization: Meta-analysis. Scientific reports, 7(1), 13941.

Joshi, S. R., Palekar, A. U., Pendyala, G. S., Mopagar, V., Padmawar, N., & Shah, P. (2020). Clinical Success of Platelet-rich Fibrin and Mineral Trioxide Aggregate (MTA) or MTA-like Agents in Healing of Periapical Lesion in Nonsurgically Treated Pulpless Immature Permanent Teeth: A Systematic Review. Journal of International Society of Preventive & Community Dentistry, 10(4), 379–383.

Jung, J. Y., Woo, S. M., Lee, B. N., Koh, J. T., Nör, J. E., & Hwang, Y. C. (2015). Effect of Biodentine and Bioaggregate on odontoblastic differentiation via mitogen-activated protein kinase pathway in human dental pulp cells. International endodontic journal, 48(2), 177–184.

Kahler, B., Rossi-Fedele, G., Chugal, N., & Lin, L. M. (2017). An Evidence-based Review of the Efficacy of Treatment Approaches for Immature Permanent Teeth with Pulp Necrosis. Journal of endodontics, 43(7), 1052–1057.

Kaur, M., Singh, H., Dhillon, J. S., Batra, M., & Saini, M. (2017). MTA versus Biodentine: Review of Literature with a Comparative Analysis. Journal of clinical and diagnostic research: JCDR, 11(8), ZG01–ZG05.

Keskin, C., Demiryurek, E. O., & Ozyurek, T. (2015). Color stabilities of calcium silicate-based materials in contact with different irrigation solutions. Journal of endodontics, 41(3), 409–411.

Keskin, C., Sariyilmaz, E., & KeleŞ, A. (2019). The effect of bleaching agents on the compressive strength of calcium silicate-based materials. Australian endodontic journal : the journal of the Australian Society of Endodontology Inc, 45(3), 311–316.

Khedmat, S., Dehghan, S., Hadjati, J., Masoumi, F., Nekoofar, M. H., & Dummer, P. M. (2014). In vitro cytotoxicity of four calcium silicate-based endodontic cements on human monocytes, a colorimetric MTT assay. Restorative dentistry & endodontics, 39(3), 149–154.

Kim, S., & Kratchman, S. (2006). Modern endodontic surgery concepts and practice: a review. Journal of endodontics, 32(7), 601–623.

Kontakiotis, E. G., Filippatos, C. G., Tzanetakis, G. N., & Agrafioti, A. (2015). Regenerative endodontic therapy: a data analysis of clinical protocols. Journal of endodontics, 41(2), 146–154.

Laurent, P., Camps, J., & About, I. (2012). Biodentine(TM) induces TGF-β1 release from human pulp cells and early dental pulp mineralization. International endodontic journal, 45(5), 439–448.

Laurent, P., Camps, J., De Méo, M., Déjou, J., & About, I. (2008). Induction of specific cell responses to a Ca(3)SiO(5)-based posterior restorative material. Dental materials : official publication of the Academy of Dental Materials, 24(11), 1486–1494.

Lee, B. N., Lee, K. N., Koh, J. T., Min, K. S., Chang, H. S., Hwang, I. N., Hwang, Y. C., & Oh, W. M. (2014). Effects of 3 endodontic bioactive cements on osteogenic differentiation in mesenchymal stem cells. Journal of endodontics, 40(8), 1217–1222.

Ma, J., Shen, Y., Stojicic, S., & Haapasalo, M. (2011). Biocompatibility of two novel root repair materials. Journal of endodontics, 37(6), 793–798.

Mori, G. G., Teixeira, L. M., de Oliveira, D. L., Jacomini, L. M., & da Silva, S. R. (2014). Biocompatibility evaluation of biodentine in subcutaneous tissue of rats. Journal of endodontics, 40(9), 1485–1488.

Możyńska, J., Metlerski, M., Lipski, M., & Nowicka, A. (2017). Tooth Discoloration Induced by Different Calcium Silicate-based Cements: A Systematic Review of In Vitro Studies. Journal of endodontics, 43(10), 1593–1601.

Murray, P. E., Garcia-Godoy, F., & Hargreaves, K. M. (2007). Regenerative endodontics: a review of current status and a call for action. Journal of endodontics, 33(4), 377–390.

Naghavi, N., Ghoddusi, J., Sadeghnia, H. R., Asadpour, E., & Asgary, S. (2014). Genotoxicity and cytotoxicity of mineral trioxide aggregate and calcium enriched mixture cements on L929 mouse fibroblast cells. Dental materials journal, 33(1), 64–69.

Nai, G. A., Logar, G., Mori, G. G., Teixeira, L. M., Silva, B. C., Moraes, A. E., & Cabral, F. A. (2016). Evaluation of the genotoxicity and mutagenicity of Ca3SiO5-based cement. Brazilian oral research, 30(1), S1806-83242016000100277.

Namour, M., & Theys, S. (2014). Pulp revascularization of immature permanent teeth: a review of the literature and a proposal of a new clinical protocol. TheScientificWorldJournal, 2014, 737503.

Narang, I., Mittal, N., & Mishra, N. (2015). A comparative evaluation of the blood clot, platelet-rich plasma, and platelet-rich fibrin in regeneration of necrotic immature permanent teeth: A clinical study. Contemporary clinical dentistry, 6(1), 63–68.

Odabaş, M. E., Bani, M., & Tirali, R. E. (2013). Shear bond strengths of different adhesive systems to biodentine. TheScientificWorldJournal, 2013, 626103.

Palit Madhu Chanda, Hegde, K. S., Bhat, S. S., Sargod, S. S., Mantha, S., & Chattopadhyay, S. (2014). Tissue engineering in endodontics: root canal revascularization. The Journal of clinical pediatric dentistry, 38(4), 291–297.

Patil, U., Yeli, M., Tapashetti, S., Naik, B., & Tilakchand, M. (2019). Effect of varying durations of intracanal medicament application used in regenerative endodontic treatment on the push-out bond strength of a novel cement: NeoMTA Plus. Journal of conservative dentistry : JCD, 22(1), 48–53.

Parirokh, M., Sadr, S., Nakhaee, N., Abbott, P. V., & Manochehrifar, H. (2014). Comparison between prescription of regular or on-demand ibuprofen on postoperative pain after single-visit root canal treatment of teeth with irreversible pulpitis. Journal of endodontics, 40(2), 151–154.

Parirokh, M., Torabinejad, M., & Dummer, P. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. International endodontic journal, 51(2), 177–205.

Parirokh, M., & Torabinejad, M. (2010). Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. Journal of endodontics, 36(1), 16–27.

Patidar, S., Kalra, N., Khatri, A., & Tyagi, R. (2017). Clinical and radiographic comparison of platelet-rich fibrin and mineral trioxide aggregate as pulpotomy agents in primary molars. Journal of the Indian Society of Pedodontics and Preventive Dentistry, 35(4), 367–373.

Peters, O. A., Galicia, J., Arias, A., Tolar, M., Ng, E., & Shin, S. J. (2016). Effects of two calcium silicate cements on cell viability, angiogenic growth factor release and related gene expression in stem cells from the apical papilla. International endodontic journal, 49(12), 1132–1140.

Pradelle-Plasse, N. & Tran Xuan-Vin, C. (2009). Physico-chemical properties of Biodentine. In: Goldberg, M. editor. Biocompatibility or cytotoxic effects of dental composites.1st ed. Oxford: Coxmoor Publishing, p. 222.

Prati, C., & Gandolfi, M. G. (2015). Calcium silicate bioactive cements: Biological perspectives and clinical applications. Dental materials: official publication of the Academy of Dental Materials, 31(4), 351–370.

Quintana, R. M., Jardine, A. P., Grechi, T. R., Grazziotin-Soares, R., Ardenghi, D. M., Scarparo, R. K., Grecca, F. S., & Kopper, P. (2019). Bone tissue reaction, setting time, solubility, and pH of root repair materials. Clinical oral investigations, 23(3), 1359–1366.

Rajasekharan, S., Martens, L. C., Cauwels, R., & Anthonappa, R. P. (2018). Biodentine™ material characteristics and clinical applications: a 3 year literature review and update. European archives of paediatric dentistry: official journal of the European Academy of Paediatric Dentistry, 19(1), 1–22.

Roberts, H. W., Toth, J. M., Berzins, D. W., & Charlton, D. G. (2008). Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dental materials : official publication of the Academy of Dental Materials, 24(2), 149–164.

Saeki, K., Fujita, Y., Shiono, Y., Morimoto, Y., & Maki, K. (2014). Pulp revascularization in immature permanent tooth with apical periodontitis using mineral trioxide aggregate. Case reports in medicine, 2014, 564908.

Sawyer, A. N., Nikonov, S. Y., Pancio, A. K., Niu, L. N., Agee, K. A., Loushine, R. J., Weller, R. N., Pashley, D. H., & Tay, F. R. (2012). Effects of calcium silicate-based materials on the flexural properties of dentin. Journal of endodontics, 38(5), 680–683.

Siboni, F., Taddei, P., Prati, C., & Gandolfi, M. G. (2017). Properties of NeoMTA Plus and MTA Plus cements for endodontics. International endodontic journal, 50(2), e83-e94.

Silva, E. J., Senna, P. M., De-Deus, G., & Zaia, A. A. (2016). Cytocompatibility of Biodentine using a three-dimensional cell culture model. International endodontic journal, 49(6), 574–580.

Simsek, N., Alan, H., Ahmetoglu, F., Taslidere, E., Bulut, E. T., & Keles, A. (2015). Assessment of the biocompatibility of mineral trioxide aggregate, bioaggregate, and biodentine in the subcutaneous tissue of rats. Nigerian journal of clinical practice, 18(6), 739–743.

Songtrakul, K., Azarpajouh, T., Malek, M., Sigurdsson, A., Kahler, B., & Lin, L. M. (2020). Modified Apexification Procedure for Immature Permanent Teeth with a Necrotic Pulp/Apical Periodontitis: A Case Series. Journal of endodontics, 46(1), 116–123.

Tanomaru-Filho, M., Andrade, A. S., Rodrigues, E. M., Viola, K. S., Faria, G., Camilleri, J., Guerreiro-Tanomaru, J. M. (2017). Biocompatibility and mineralized nodule formation of Neo MTA Plus and an experimental tricalcium silicate cement containing tantalum oxide. Int Endod J. 50, e31-e39.

Tomás-Catalá, C. J., Collado-González, M., García-Bernal, D., Oñate-Sánchez, R. E., Forner, L., Llena, C., Lozano, A., Moraleda, J. M., & Rodríguez-Lozano, F. J. (2018). Biocompatibility of New Pulp-capping Materials NeoMTA Plus, MTA Repair HP, and Biodentine on Human Dental Pulp Stem Cells. Journal of endodontics, 44(1), 126–132.

Torabinejad, M., & Parirokh, M. (2010). Mineral trioxide aggregate: a comprehensive literature review--part II: leakage and biocompatibility investigations. Journal of endodontics, 36(2), 190–202.

Torabinejad, M., Parirokh, M., & Dummer, P. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. International endodontic journal, 51(3), 284–317.

Ürkmez, E. Ş., & Pınar Erdem, A. (2020). Bioactivity evaluation of calcium silicate-based endodontic materials used for apexification. Australian endodontic journal: the journal of the Australian Society of Endodontology Inc, 46(1), 60–67.

Zanini, M., Sautier, J. M., Berdal, A., & Simon, S. (2012). Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. Journal of endodontics, 38(9), 1220–1226.

Zhou, W., Zheng, Q., Tan, X., Song, D., Zhang, L., & Huang, D. (2017). Comparison of Mineral Trioxide Aggregate and iRoot BP Plus Root Repair Material as Root-end Filling Materials in Endodontic Microsurgery: A Prospective Randomized Controlled Study. Journal of endodontics, 43(1), 1–6.

Zhu, X., Zhang, C., Huang, G. T., Cheung, G. S., Dissanayaka, W. L., & Zhu, W. (2012). Transplantation of dental pulp stem cells and platelet-rich plasma for pulp regeneration. Journal of endodontics, 38(12), 1604–1609.



How to Cite

MACHADO, N. E. da S.; GOMES, V. M.; VASQUES, A. M. V.; RIBEIRO, A. P. F.; SANTOS, A. M. de S.; MENDES, B. C.; CINTRA, L. T. Ângelo; SILVA, E. M. da. Biomaterials used in pulp revascularization: literature review. Research, Society and Development, [S. l.], v. 10, n. 1, p. e55410112017, 2021. DOI: 10.33448/rsd-v10i1.12017. Disponível em: Acesso em: 7 mar. 2021.



Health Sciences