Laboratory evaluation of hot asphalt mixtures produced with combined graphite

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12030

Keywords:

Asphalt mixtures; Four point bending test; Complex module; Phase angle; Comminuted graphite.

Abstract

Throughout its history, the construction of road pavements, faces the loss of functional and structural characteristics, due to technological and financial obstacles. In this way, studies of new materials to be used in asphalt concrete become relevant, in order to favor the implementation of more economical maintenance, recovery and pavement design policies due to their greater long-term technical suitability, and in particular , minimize the early maintenance of these structures. In this respect, the main objective of the present work was to experimentally compare through complex module (E *) and phase angle (δ) two types of asphalt concrete, one made with asphalt composition with Portland cement (CA-REF), and the other asphalt composition with comminuted graphite (CA-GRAFC). For this, four point flexion equipment was used, using a uniaxial sinusoidal loading of compression, deformation amplitude of 50μm / m; frequencies of 0.1, 0.2, 0.5, 1, 2, 5, 10 and 20 Hz and temperatures from 0 to 40 ° C, in increments of 5 ° C. After carrying out the mechanical tests, it was found that, under the conditions analyzed, the asphalt composition with comminuted graphite becomes a promising alternative as a material applicable to road pavements, acting as a substitute for the traditional filler (Portland cement).

References

ASTM C127-15. (2015). Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. Conshohocken: ASTM International. 10.1520/C0127-15.

ASTM C128-15. (2015). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. Conshohocken: ASTM International. 10.1520/C0128-15.

ASTM C131/C131M-14. (2014). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. Conshohocken: ASTM International. 10.1520/C0131_C0131M-14.

ASTM D5/D5M-20. (2013). Standard test method for penetration of bituminous materials. Conshohocken: ASTM International. 10.1520/D0005_D0005M-20.

ASTM D36/D36M-14. (2014). Standard test method for softening point of bitumen (ring-and-ball apparatus). Conshohocken: ASTM International. 10.1520/D0036_D0036M-14R20.

ASTM D92-18. (2018). Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. Conshohocken: ASTM International. 10.1520/D0092-18.

ASTM D113-17. (2017). Standard Test Method for Ductility of Asphalt Materials. Conshohocken: ASTM International. 10.1520/D0113-17.

ASTM D2042-15. (2015). Standard Test Method for Solubility of Asphalt Materials in Trichloroethylene. Conshohocken: ASTM International. 10.1520/D2042-15.

ASTM D2872-19. (2012). Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test). Conshohocken: ASTM International. 10.1520/D2872-19.

ASTM D4402/D4402M-15. (2013). Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. Conshohocken: ASTM International. 10.1520/D4402_D4402M-15.

ASTM E102/E102M-93. (2016). Standard Test Method for Saybolt Furol Viscosity of Bituminous Materials at High Temperatures. Conshohocken: ASTM International. 10.1520/E0102_E0102M-93R16.

Arao, M. (2016). Avaliação do comportamento mecânico de misturas asfálticas com a inserção de polietileno tereftalato (PET) triturado. Pontifícia Universidade Católica do Rio de Janeiro, Dissertação de Mestrado.

Balbo, J. T. (2007). Pavimentação asfáltica: materiais, projeto e restauração. Editora Oficina de Textos, 560 p.

Bardini, V. S. S., Klinsky, L. M. G., Júnior, J. L. F. & Roque, R. (2012). Influência do fíler mineral no comportamento reológico de mástiques asfálticos. Transportes, 20 (3), 19-26. https://doi.org/10.4237/transportes.v20i4.603.

Bernucci, L. B., Motta, L. M. G., Ceratti, J. A. P. & Soares, J. B. (2008). Pavimentação asfáltica: formação básica para engenheiros. 501 p.

Carlesso, G. C. (2017). Estudo do comportamento de mistura asfáltica modificada por nanoargila e polímero SBS. Universidade Federal de Santa Catarina, Dissertação de mestrado.

Carlesso, G. C., Trichês, G., De Melo, J. V.S., Marcon, M. F., Thives, L. P. & Da Luz, L. C. (2019). Evaluation of Rheological Behavior, Resistance to Permanent Deformation, and Resistance to Fatigue of Asphalt Mixtures Modified with Nanoclay and SBS Polymer. Applied Sciences-Basel, 9, 2697-2713. https://doi.org/10.3390/app9132697

Das, B.M. (2015). Fundamentos de engenharia geotécnica. Cengage Learning. 612 p.

DNIT ES 031/2006. (2006). Pavimentos flexíveis: concreto asfáltico: especificação de serviço.

DNIT ME 035/1998. (1998). Agregados - determinação da abrasão “Los Angeles”.

EN 12697-26. (2018). Bituminous mixtures - test methods for hot mix asphalt, part 26: Stiffness.

Jackson, M. L. & Sherman, G. D. (1953). Chemical weathering of minerals in soil. Adv. Agron, 211-318.

Kim, Y. R. (2008). Modeling of asphalt concrete. United State of America: ASCE Press. 460 p.

Marcon, M. F. (2016). Estudo e comparação do desempenho mecânico e reológico entre concretos asfálticos modificados por polímero SBS, borracha moída de pneu e nanomateriais. Universidade Federal de Santa Catarina. Dissertação de Mestrado.

Mendes, L. O. & Marques, G. L. O. (2012). Avaliação da influência do método bailey no processo de dosagem e desempenho de misturas asfálticas. Transportes, 20 (4), 35-43. 10.4237/transportes.v20i4.574.

Melo, J. V. S. (2014). Desenvolvimento e estudo do comportamento reológico e desempenho mecânico de concretos asfálticos modificados com nanocompósitos. Universidade Federal de Santa Catarina, Tese de Doutorado.

Melo, J. V. S. & Trichês, G. (2016). Effects of organophilic nanoclay on the rheological behavior and performance leading to permanent deformation of asphalt mixtures. Journal of Materials in Civil Engineering, 28 (11), 04016142. 10.1061/(ASCE)MT.1943-5533.0001650.

Moreno-Navarro, F. & Rubio-Gámez, M. C. (2016). A review of fatigue damage in bituminous mixtures: Understanding the phenomenon from a new perspective. Construction and Building Materials, 113, 927-938. https://doi.org/10.1016/j.conbuildmat.2016.03.126.

Papagiannakis, A. T. & Massad, E. A. (2008). Pavement Design and Materials. John Wiley & Sons, Hoboken, 542 p.

Pereira, A. G., Spinola, J. R., Monteiro, A. K. C., Lacerda, B. M., Gusmao, F. S. & Frota, C. A. (2019). Mechanical behavior of asphaltic mixtures produced with spray graphite in high energy mill. International Journal of Engineering Research and Applications (IJERA), 9, 18-26. 10.9790/9622- 0911031826.

Senço, W. (2007). Manual de técnicas de pavimentação. (2a ed.), Pini, 764 p.

Sol-Sánchez, M., Moreno-Navarro, F., García-Travé, G. & Rubio-Gámez, M. C. (2015). Laboratory study of the long-term climatic deterioration of asphalt mixtures. Construction and Building Materials, 88, 32-40. https://doi.org/10.1016/j.conbuildmat.2015.03.090.

Specht, L. P., Granich, A., Pasche, E. & Boeira, F. (2012). Estudo laboratorial de misturas asfálticas com adição de diferentes teores e tipos de cal. Revista Estradas, 17, 66-72.

Suryanarayana, C. (1995). Nanocrystalline materials. Int. Materials Reviews, 40 (20), 41-64.

Torres, A. P., Pereira, I. N. A., Spinola, J. R., Pereira, A. G. & Frota, C. A. (2019). Four-point bending mechanical behavior of aged asphalt mixtures containing charcoal. International Journal for Innovation Education and Research, 7, 460-472. 10.31686/ijier.Vol7.Iss10.1794.

Yan, K., Xu, H. & You, L. (2015). Rheological properties of asphalts modified by waste tire rubber and reclaimed low density polyethylene. Construction and Building Materials, 83, 143-149. https://doi.org/10.1016/j.conbuildmat.2015.02.092.

Yoder, E. J., & Witczak, M. W. (1975). Principles of Pavement Design. (2a ed.), John Wiley & Sons Inc.

Published

14/02/2021

How to Cite

PEREIRA, A. G. .; VIEIRA, C. da S. .; OLIVEIRA, M. B. de .; PAIVA, J. C. A. .; SILVA, R. L. da . Laboratory evaluation of hot asphalt mixtures produced with combined graphite. Research, Society and Development, [S. l.], v. 10, n. 2, p. e25110212030, 2021. DOI: 10.33448/rsd-v10i2.12030. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12030. Acesso em: 2 jan. 2025.

Issue

Section

Engineerings