Antimalarial potential of quinones isolated from plants: an integrative review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12507

Keywords:

Quinones; Plasmodium; Antimalarials; Plants.

Abstract

Antimalarial treatment is often associated with the resistance developed by Plasmodium which generate ineffective drug treatment. Based on this, the search for therapeutic alternatives is necessary and urgent. This review intends to assess the antimalarial potential of quinones isolated from plants. The search for scientific articles was carried out on the CAPES Journal Portal (PPC), Virtual Health Library (VHL), PUBMED, NCBI and SCIELO, using the following descriptors: quinones and antimalarials. Inclusion criteria were adopted based on studies about quinones isolated from plants and tested against Plasmodium falciparum and Plasmodium berghei. The exclusion criteria were based mainly on articles that tested extracts, fractions and synthesis of quinones obtained from plants and other natural products. A total of 1344 publications were collected for screening (PPC = 5, VHL = 248, PUBMED = 525, NCBI = 462 and SCIELO = 94). From this total, 1280 articles were excluded, with only 64 articles selected for full reading. All benzoquinones were active against P. falciparum. Naphthoquinones were active, inactive and moderately active against the P. falciparum e P berghei. Anthraquinones and anthrones were active and moderately active against P. falciparum. The naphthoquinone 2-acetylnaphtho- [2,3b] -furan-4,9-dione was the most active of all the molecules tested against Plasmodium. Whereas lapachol was the most studied naphthoquinone and structural changes do not seem to contribute to the activity. In summary, quinones are promising as antimalarials, however, need in vivo studies.

References

Abdissa, D., Geleta, G., Bacha, K., & Abdissa, N. (2017). Phytochemical investigation of Aloe pulcherrima roots and evaluation for its antibacterial and antiplasmodial activities. PLoS One, 12(3), e0173882. doi: https://doi.org/10.1371/journal.pone.0173882

Abdissa, N., Induli, M., Akala, H. M., Heydenreich, M., Midiwo, J. O., Ndakala, A., & Yenesew, A. (2013). Knipholone cyclooxanthrone and an anthraquinone dimer with antiplasmodial activities from the roots of Kniphofia foliosa. Phytochemistry Letters, 6(2), 241-245. Doi: 10.1016/j.phytol.2013.02.005

Aguiar, A. C. C., da Rocha, E. M., de Souza, N. B., França, T. C., & Krettli, A. U. (2012). New approaches in antimalarial drug discovery and development: a review. Memorias do Instituto Oswaldo Cruz, 107(7), 831-845. Doi: 10.1590/S0074-02762012000700001

Barbosa, M. I., Correa, R. S., de Oliveira, K. M., Rodrigues, C., Ellena, J., Nascimento, O. R., & & Batista, A. A. (2014). Antiparasitic activities of novel ruthenium/lapachol complexes. Journal of inorganic biochemistry, 136, 33-39. DOI: 10.1016/j.jinorgbio.2014.03.009

Basco, L. K., de Pécoulas, P. E., Wilson, C. M., Le Bras, J., & Mazabraud, A. (1995). Point mutations in the dihydrofolate reductase-thymidylate synthase gene and pyrimethamine and cycloguanil resistance in. Molecular and biochemical parasitology, 69, 135-138. doi: 10.1016/0166-6851(94)00207-4.

Birth, D., Kao, W. C., & Hunte, C. (2014). Structural analysis of atovaquone-inhibited cytochrome bc 1 complex reveals the molecular basis of antimalarial drug action. Nature communications, 5(1), 1-11. doi: 10.1038/ncomms5029|www.nature.com/ naturecommunications.

Boonphong, S., Puangsombat, P., Baramee, A., Mahidol, C., Ruchirawat, S., & Kittakoop, P. (2007). Bioactive compounds from Bauhinia purpurea possessing antimalarial, antimycobacterial, antifungal, anti-inflammatory, and cytotoxic activities. Journal of natural products, 70(5), 795-801. doi: 10.1021/np070010e.

Bringmann, G., Mutanyatta‐Comar, J., Maksimenka, K., Wanjohi, J. M., Heydenreich, M., Brun, R., & Yenesew, A. (2008). Joziknipholones A and B: the first dimeric phenylanthraquinones, from the roots of Bulbine frutescens. Chemistry–A European Journal, 14(5), 1420-1429. doi: https://doi.org/10.1002/chem.200701328

Coutinho, J. P., Aguiar, A. C. C., Santos, P. A. D., Lima, J. C., Rocha, M. G. L., Zani, C. L., & Krettli, A. U. (2013). Aspidosperma (Apocynaceae) plant cytotoxicity and activity towards malaria parasites. Part I: Aspidosperma nitidum (Benth) used as a remedy to treat fever and malaria in the Amazon. Memórias do Instituto Oswaldo Cruz, 108(8), 974-982. doi: https://doi.org/10.1590/0074-0276130246

de Andrade-Neto, V. F., Goulart, M. O., da Silva Filho, J. F., da Silva, M. J., Maria do Carmo, F. R., Pinto, A. V., & Krettli, A. U. (2004). Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorganic & Medicinal Chemistry Letters, 14(5), 1145-1149. doi: 10.1016/j.bmcl.2003.12.069

do Nascimento, M. F. A., Borgati, T. F., de Souza, L. C. R., Tagliati, C. A., & de Oliveira, A. B. (2020). In silico, in vitro and in vivo evaluation of natural Bignoniaceous naphthoquinones in comparison with atovaquone targeting the selection of potential antimalarial candidates. Toxicology and Applied Pharmacology, 401, 115074. doi: 10.1016/j.taap.2020.115074.

El Hage, S., Ane, M., Stigliani, J. L., Marjorie, M., Vial, H., Baziard-Mouysset, G., & Payard, M. (2009). Synthesis and antimalarial activity of new atovaquone derivatives. European journal of medicinal chemistry, 44(11), 4778-4782. doi: 10.1016/j.ejmech.2009.07.021.

Endale, M., Ekberg, A., Akala, H. M., Alao, J. P., Sunnerhagen, P., Yenesew, A., & Erdélyi, M. (2012). Busseihydroquinones A–D from the Roots of Pentas bussei. Journal of Natural Products, 75(7), 1299-1304.

Feilcke, R., Arnouk, G., Raphane, B., Richard, K., Tietjen, I., Andrae-Marobela, K., & Fobofou, S. A. (2019). Biological activity and stability analyses of knipholone anthrone, a phenyl anthraquinone derivative isolated from Kniphofia foliosa Hochst. Journal of pharmaceutical and biomedical analysis, 174, 277-285. doi: 10.1016/j.jpba.2019.05.065

Gamo, F. J., Sanz, L. M., Vidal, J., De Cozar, C., Alvarez, E., Lavandera, J. L., & Garcia-Bustos, J. F. (2010). Thousands of chemical starting points for antimalarial lead identification. Nature, 465(7296), 305-310. doi: 10.1038/nature09107

Gómez-Estrada, H., Gaitán-Ibarra, R., Díaz-Castillo, F., Pérez, H. A., & Medina, J. D. (2012). In vitro antimalarial activity of fractions and constituents isolated from Tabebuia billbergii. Revista Cubana de Plantas Medicinales, 17(2), 172-180.

Hughes, L. M., Lanteri, C. A., O’Neil, M. T., Johnson, J. D., Gribble, G. W., & Trumpower, B. L. (2011). Design of anti-parasitic and anti-fungal hydroxy-naphthoquinones that are less susceptible to drug resistance. Molecular and biochemical parasitology, 177(1), 12-19. doi: 10.1016/j.molbiopara.2011.01.002.

Hyde, J. E. (2002). Mechanisms of resistance of Plasmodium falciparum to antimalarial drugs. Microbes and Infection, 4(2), 165-174. doi: 10.1016/s1286-4579(01)01524-6.

Ichino, C., Soonthornchareonnon, N., Chuakul, W., Kiyohara, H., Ishiyama, A., Sekiguchi, H., & Yamada, H. (2006). Screening of Thai medicinal plant extracts and their active constituents for in vitro antimalarial activity. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 20(4), 307-309. doi: https://doi.org/10.1002/ptr.1850.

Induli, M., Gebru, M., Abdissa, N., Akala, H., Wekesa, I., Byamukama, R., & Yenesew, A. (2013). Antiplasmodial quinones from the rhizomes of Kniphofia foliosa. Natural product communications, 8(9), 1261-1264. doi: https://doi.org/10.1177/1934578X1300800920

Kumar, R., Musiyenko, A., & Barik, S. (2003). The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin. Malaria Journal, 2(1), 1-11.

Lenta, B. N., Devkota, K. P., Ngouela, S., Boyom, F. F., Naz, Q., Choudhary, M. I., & Sewald, N. (2008). Anti-plasmodial and cholinesterase inhibiting activities of some constituents of Psorospermum glaberrimum. Chemical and Pharmaceutical Bulletin, 56(2), 222-226. Doi: https://doi.org/10.1248/cpb.56.222

Lenta, B. N., Ngouela, S., Boyom, F. F., Tantangmo, F., Tchouya, G. R. F., Tsamo, E., & Connolly, J. D. (2007). Anti-plasmodial activity of some constituents of the root bark of Harungana madagascariensis L AM.(Hypericaceae). Chemical and pharmaceutical bulletin, 55(3), 464-467.

Likhitwitayawuid, K., Kaewamatawong, R., Ruangrungsi, N., & Krungkrai, J. (1998). Antimalarial naphthoquinones from Nepenthes thorelii. Planta medica, 64(03), 237-241. doi: 10.1055/s-2006-957417.

Moreira, D. R., de Sá, M. S., Macedo, T. S., Menezes, M. N., Reys, J. R. M., Santana, A. E., & Soares, M. B. (2015). Evaluation of naphthoquinones identified the acetylated isolapachol as a potent and selective antiplasmodium agent. Journal of enzyme inhibition and medicinal chemistry, 30(4), 615-621.

Mutanyatta, J., Bezabih, M., Abegaz, B. M., Dreyer, M., Brun, R., Kocher, N., & Bringmann, G. (2005). The first 6′-O-sulfated phenylanthraquinones: isolation from Bulbine frutescens, structural elucidation, enantiomeric purity, and partial synthesis. Tetrahedron, 61(35), 8475-8484.

Nájera, J. A. (2001). Malaria control: achievements, problems and strategies. Parassitologia, 43(1-2), 1-89.

Ngemenya, M. N., Metuge, H. M., Mbah, J. A., Zofou, D., Babiaka, S. B., & Titanji, V. P. (2015). Isolation of natural product hits from Peperomia species with synergistic activity against resistant Plasmodium falciparum strains. European Journal of Medicinal Plants, 5(1), 77-87.

Noedl, H., Se, Y., Schaecher, K., Smith, B. L., Socheat, D., & Fukuda, M. M. (2008). Evidence of artemisinin-resistant malaria in western Cambodia. New England Journal of Medicine, 359(24), 2619-2620. doi: 10.1056/NEJMc0805011

Onegi, B., Kraft, C., Köhler, I., Freund, M., Jenett-Siems, K., Siems, K., & Eich, E. (2002). Antiplasmodial activity of naphthoquinones and one anthraquinone from Stereospermum kunthianum. Phytochemistry, 60(1), 39-44. doi: 10.1016/s0031-9422(02)00072-9.

Organización Panamericana de la Salud. Actualización Epidemiológica: Malaria en las Américas en el contexto de la pandemia de COVID-19. Washington, D.C.: OPS/OMS (2020).

Penna-Coutinho, J., Cortopassi, W. A., Oliveira, A. A., França, T. C. C., & Krettli, A. U. (2011). Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PloS one, 6(7), e21237. doi: https://doi.org/10.1371/journal.pone.0021237.

Radwan, M. M., ElSohly, M. A., Slade, D., Ahmed, S. A., Wilson, L., El-Alfy, A. T., & Ross, S. A. (2008). Non-cannabinoid constituents from a high potency Cannabis sativa variety. Phytochemistry, 69(14), 2627-2633.

Richter, K., & Buchner, J. (2001). Hsp90: chaperoning signal transduction. Journal of cellular physiology, 188(3), 281-290. doi: 10.1016/j.phytochem.2008.07.010.

Silva, M. N. D., Ferreira, V. F., & de Souza, M. C. B. (2003). Um panorama atual da química e da farmacologia de naftoquinonas, com ênfase na beta-lapachona e derivados. Química Nova, 26(3), 407-416. doi: http://dx.doi.org/10.1590/S0100-40422003000300019.

Souza, N. B. D., de Andrade, I. M., Carneiro, P. F., Jardim, G. A., de Melo, I. M., da Silva Júnior, E. N., & Krettli, A. U. (2014). Blood shizonticidal activities of phenazines and naphthoquinoidal compounds against Plasmodium falciparum in vitro and in mice malaria studies. Memórias do Instituto Oswaldo Cruz, 109(5), 546-552. doi: https://doi.org/10.1590/0074-0276130603

Tasdemir, D., Brun, R., Yardley, V., Franzblau, S. G., & Rüedi, P. (2006). Antituberculotic and antiprotozoal activities of primin, a natural benzoquinone: In vitro and in vivo studies. Chemistry & biodiversity, 3(11), 1230-1237. Doi: 10.1002/cbdv.200690124.

Theerachayanan, T., Sirithunyalug, B., & Piyamongkol, S. (2007). Antimalarial and antimycobacterial activities of dimeric Naphthoquinone from Diospyros glandulosa and Diospyros rhodocalyx. CMU J Nat Sci, 6, 253-258.

Thomson, R. H. R. H. (2012). Naturally occurring quinones. Elsevier.

Vale, V. V., Cruz, J. N., Viana, G. M. R., Póvoa, M. M., Brasil, D. D. S. B., & Dolabela, M. F. (2020). Naphthoquinones isolated from Eleutherine plicata herb: In vitro antimalarial activity and molecular modeling to investigate their binding modes. Medicinal Chemistry Research, 29(3), 487-494. doi: https://doi.org/10.1007/s00044-019-02498-z.

Van Hong, N., Amambua-Ngwa, A., Tuan, N. Q., Cuong, D. D., Giang, N. T. H., Van Dung, N., & Erhart, A. (2014). Severe malaria not responsive to artemisinin derivatives in man returning from Angola to Vietnam. Emerging Infectious Diseases, 20(7), 1207-1210. doi: https://dx.doi.org/10.3201/eid2007.140155.

Waller, R. F., & McFadden, G. I. (2005). The apicoplast: a review of the derived plastid of apicomplexan parasites. Current issues in molecular biology, 7, 57-80.

Weiss, C. R., Moideen, S. V., Croft, S. L., & Houghton, P. J. (2000). Activity of extracts and isolated naphthoquinones from Kigelia pinnata against Plasmodium falciparum. Journal of Natural Products, 63(9), 1306-1309. doi: 10.1021/np000029g.

Winstanley, P. (2001). Modern chemotherapeutic options for malaria. The Lancet infectious diseases, 1(4), 242-250. doi: 10.1016/S1473-3099(01)00119-0

Wongsrichanalai, C., Pickard, A. L., Wernsdorfer, W. H., & Meshnick, S. R. (2002). Epidemiology of drug-resistant malaria. The Lancet infectious diseases, 2(4), 209-218. doi: 10.1016/s1473-3099(02)00239-6.

World Health Organization. World malaria report. Geneva, (2019).

Wube, A. A., Bucar, F., Asres, K., Gibbons, S., Rattray, L., & Croft, S. L. (2005). Antimalarial compounds from Kniphofia foliosa roots. Phytotherapy Research, 19(6), 472-476. doi: 10.1002/ptr.1635.

Downloads

Published

20/02/2021

How to Cite

GOMES, A. R. Q. .; BRÍGIDO, H. P. C. .; VALE, V. V. .; CORREA-BARBOSA, J.; PERCÁRIO, S.; DOLABELA, M. F. . Antimalarial potential of quinones isolated from plants: an integrative review. Research, Society and Development, [S. l.], v. 10, n. 2, p. e38210212507, 2021. DOI: 10.33448/rsd-v10i2.12507. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12507. Acesso em: 17 nov. 2024.

Issue

Section

Review Article