Adaptive evolution of Saccharomyces cerevisiae and its application in co-culture with Saccharomyces kudriavzevii in the production of fermented Myrciaria jaboticaba

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12525

Keywords:

Adaptive evolution; Ethanol tolerance; Fermented beverage; Myrciaria jaboticaba.

Abstract

The objective of this work was to apply the adaptive evolution technique using the Saccharomyces cerevisiae T73 strain to increase its tolerance to ethanol and to evaluate its behavior in co-culture with Saccharomyces kudriavzevii CR85 in the production of fermented Myrciaria jaboticaba. Fermentations were carried out at 25 °C for 186 hours under agitation of 150 rpm, according to a central. The consumption of sugar, ethanol, glycerol and acetic acid formed during the fermentation process was evaluated. The results showed that there is an improvement in ethanol tolerance in S. cerevisiae T73 when submitted to the evolution process. Its use for the production of fermentation of Myrciaria jaboticaba in co-culture shows that the highest yield was observed when 0.0372 g.L-1 and 0.0648 g.L-1 of S. cerevisiae T73 PE (that underwent evolution) and CR85 respectively. These results differed statistically from the experiments using the original T73 strain. Regarding the production of ethanol in co-culture there is a significant increase when using the evolved T73 strain, showing possible changes in the primary metabolism of the ethanol production process, due to the changes promoted during the adaptive evolution of the T73 strain. The results show the potential of the new strain for the production of fermented with higher concentrations of sugars in the must.

References

Alonso-del-Real, J., Contreras-Ruiz, A., Castiglioni, G. L., Barrio, E. & Querol A. (2017). The Use of Mixed Populations of Saccharomyces cerevisiae and S. kudriavzevii to Reduce Ethanol Content in Wine: Limited Aeration, Inoculum Proportions, and Sequential Inoculation. Frontiers in Microbiology, 8, 2087.

Batista, A. G., Lenquiste, S. A., Cazarin, C. B. B., Silva, J. K., Luiz-Ferreira, A., Jr, S. B., Hantao, L. W., Souza, R. N., Augusto, F., Prado, M. A. & Jr, M. R. M. (2014). Intake of jaboticaba peel attenuates oxidative stress in tissues and reduces circulating saturated lipids of rats with high-fat diet-induced obesity. Journal of Functional Foods, 6, 450-461.

Batista, A. G., Silva-Maia, J. K., Mendonça, M. C. P., Soares, E. S., Lima, G. C., Junior, S. B., Cruz-Höfling, M. A. & Júnior, M.RM. (2018). Jaboticaba berry peel intake increases short chain fatty acids production and prevent hepatic steatosis in mice fed high-fat diet. Journal of Functional Foods, 48, 266-274.

Box, G. E. P. & Hunter, J. S. (1987). Multi-factor experimental designs for exploring response surfaces. Annals of mathematical statistics. 28, 195-241.

Čakar, U., Petrović, A., Pejin, B., Čakar, M., Živković, M., Vajs, V., & Dorđević B. (2019). Fruit as a substrate for a wine: A case study of selected berry and drupe fruit wines. Science Horticultare, 244, 42-49.

Carlsen, H. N., Degn, H. & Lloyd D. (1991). Effects of alcohols on the respiration and fermentation of aerated suspesions of baker’s yeast. Journal of General Microbiology, 137, 2879-2883.

Chen, Y., Cheng, L., Zhang, X., Cao, J., Wu, Z. & Zheng, X. (2019). Transcriptomic and proteomic effects of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3”Me) treatment on ethanol-stressed Saccharomyces cerevisiae cells. Food Research International, 119, 67-75.

Contreras, A., Hidalgo, C., Schmidt, S., Henschle, P. A., Curtin, C. & Varela, C. (2015). The application of non-Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content. Food Microbiology, 205, 7-15.

Costa, D. S., Plácido, G. R., Takeuchi, K. P., Sousa, T. L. (2020). Physical and biometric characterization of jabuticaba variety 'Pingo De Mel'oriunda of cerrado goiano. Research, Society and Developmen, 9, 1-12.

Ding, J., Huang, X., Zhang, L., Zhao, N., Yang, D. & Zhang, K. (2009). Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Applied Microbiology Biotechnology, 85, 253-63.

Dinh, T. N., Nagahisa, K., Hirasawa, T., Furusawa, C., & Shimizu, H. (2008). Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS One, 3, 1-7.

Duarte, W. F., Dias D. R., Oliveira, J. M., Teixeira, J. A., Silva, J. B. A. & Schwan, R. F. (2010). Characterization of different fruit wines made from cacao, cupuassu, gabiroba, jaboticaba and umbu. LWT - Food Science and. Technology, 43, 1564-1572.

Erny, C., Raoult, P., Alais, A., Butterlin, G., Delobel, P., Matei-Radoi, F., Casaregola, S. & Legras, J. L. (2012). Ecological Success of a Group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii Hybrids in the Northern European Wine-Making Environment. Applied and Environmental Microbiology, 78, 3256-3265.

Ferreira, R. M., Mota, M. J., Lopes, R. P., Sousa, S., Gomes, A. M., Delgadillo, I. & Saraiva, J. A. (2018). Adaptation of Saccharomyces cerevisiae to high pressure (15, 25 and 35MPa) to enhance the production of bioethanol. Food Research International, 115, 352-359.

Fleet, G. H. & Heard, G. M. (2002). Yeast-Growth during fermentation, In: G.H. Fleet, Ed., Harwood Academic, Wine. Microbiology and Biotechnology, Lausanne, 27-54.

González, S. S., Barrio, E., Gafner, J. & Querol A. (2006). Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Research, 6, 1221-1234.

González, S. S., Gallo, L., Climent, M. A., Barrio, E. & Quero, A. (2007). Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. International Journal Food Microbiology, 116 8-11.

Henriques, D., Alonso-Del-Real, J., Querol, A., & Balsa-Canto, E. (2018). Saccharomyces cerevisiae and S. kudriavzeii Synthetic wine Fermentation Performance Dissected by Predictive Modeling. Frontiers in Microbiology, 9, 1-14.

Henz, G. P. (2017). Postharvest losses of perishables in Brazil: what do we know so far. Horticultura Brasileira, 35, 6-13.

Hohmann, S. (2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews, 66, 300-372.

Izawa, S., Ikeda, K., Miki, T., Wakai, Y., & Inoue Y. (2010). Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sakebrewing. Applied Microbiology Biotechnology, 88, 277-282.

Jamieson, D. J. (1998). Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast, 14, 1511-1527.

Lopes, C. A., Barrio E., & Querol A. (2010). Natural hybrids of S. cerevisiae × S. kudriavzevii share alleles with European wild populations of Saccharomyces kudriavzevii. FEMS Yeast Research, 1, 412-421.

López-Malo, M., Querol, A. & Guillamon, J. M. (2013). Metabolomic comparison of Saccharomyces cerevisiae and the cryotolerant species S. bayanus var. uvarum and S. kudriavzevii during wine fermentation at low temperature. PLoS One, 8, 1-14.

Ma, M., & Liu, Z. (2010). Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Applied Microbiology Biotechnology, 87, 829-845.

Morales, P., Rojas, V., Quirós, M. & Gonzalez, R. (2015). The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Applied Microbiology and Biotechnology, 99, 3993-4003.

Naumov, G. I. (2000). Saccharomyces bayanus var. uvarum comb. nov., a new variety established by genetic analysis. Mikrobiologiia, 69, 410-414.

Novo, M., Gonzales, R., Bertran, E., Martínez, M., Yuste, M. & Morales, P. (2014). Improved fermentation kinetics by wine yeast strains evolved under ethanol stress. LWT - Food Science and Technology, 58, 166-172.

Pérez-Torrado, R., Oliveira, B. M., Zemanciková, J., Sychrová, H. & Querol, A. (2016). Alternative Glycerol Balance Strategies among Saccharomyces Species in Response to Winemaking Stress. Frontiers in Microbiology, 7, 1-13.

Peris, D. L., Pérez-Través, L., Belloch, C. & Querol, A. (2016). Enological characterization of Spanish Saccharomyces kudriavzevii strains, one of the closest relatives to parental strains of winemaking and brewing S. cerevisiae × S. kudriavzevii hybrids. Food Microbiology, 53, 31-40.

Peris, D., Belloch, C., Lopandié, K., Álvarez-Perez J. M., Querol, A. & Barrio, E. (2012). The molecular characterization of new types of Saccharomyces cerevisiae x S. kudriavzevii hybrid yeasts unveils a high genetic diversity. Yeast, 29, 81-91.

Plaza, M., Batista, Â. G., Cazarin, C. B. Sandahl, M., Turner, C., Östman, E., & Maróstica Júnior, M. R. (2016). Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidante status: A pilot clinical study. Food Chemistry, 211, 185-197.

Pretorius, I. S. (2000). Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast, 16, 675-729.

Rosa, C. & Péter, G. (2005). Biodiversity and Ecophysiology of Yeasts, Springer Berlin Heidelberg, New York.

Sampaio, J. P. & Gonçalves, P. (2008). Natural popupations of Saccharomyces Kudriavzii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. pararadoxus. Applied and Environmental Microbiology, 7, 2144-2152.

Silva, E. G., Borges, A. S., Maione, N. R., Castiglioni, G. L., Suarez, C. A. G. & Montano, I. D. C. (2019). Fermentation of hemicellulose liquor from Brewer's spent grain using Scheffersomyces stipitis and Pachysolen tannophilus for production of 2G ethanol and xylitol. Biofuels Bioproducts & Biorefining-Biofpr, 14, 127-137.

Van den Berg, M. A. & Steensma, H. Y. (1995). ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose. European Journal of Biochemistry, 231, 704-713.

Walker, G. M. & Stewart, G. G. (2016). Saccharomyces cerevisiae in the Production of Fermented Beverages. Beverages, 30, 1-12.

Widiastuti, H., Kim, J. Y., Selvarasu, S., Karimi, I. A., Kim, H., Seo, J. S., & Lee, D. Y. (2011). Genome‐scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis. Biotechnology Bioengenieering, 108, 655-665.

Downloads

Published

27/02/2021

How to Cite

SANTOS, J. E. dos .; OLIVEIRA, T. F. de .; FREITAS, F. F. .; SILVA, M. C. S. .; CASTIGLIONI, G. L. . Adaptive evolution of Saccharomyces cerevisiae and its application in co-culture with Saccharomyces kudriavzevii in the production of fermented Myrciaria jaboticaba. Research, Society and Development, [S. l.], v. 10, n. 2, p. e52010212525, 2021. DOI: 10.33448/rsd-v10i2.12525. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12525. Acesso em: 21 nov. 2024.

Issue

Section

Agrarian and Biological Sciences