High hydrostatic pressure, pulsed electric fields and cold plasma in the food production chain: Principles and industrial applicability
DOI:
https://doi.org/10.33448/rsd-v10i2.12670Keywords:
High hydrostatic pressure; Pulsed electric field; Cold plasma; Non-thermal technologies.Abstract
The search for non-thermal technologies has been gaining space in the market due to changes in consumers' eating habits and concern for preserving the environment. This technology is highly advantageous for the microbial decontamination of food products, including sporulates and pathogenic microorganisms. In this context, this review aimed at a systematic study of the literature on the main non-thermal technologies, using the databases of Science Direct and Web of Science, with the keyword “non-thermal technologies”. The selected articles were submitted for analysis using the Vosviewer software. After interpreting the density maps obtained in the software, it was noticed that the most studied non-thermal technologies, in the last five years (2015-2020), were the technologies of high hydrostatic pressure, pulsed electric field and cold plasma. The main highlights of the technologies were (i) reduction of the microbial load in the food, the cellular structure being an important factor in the inactivation of microorganisms, as well as (ii) the need for more sustainable industrial applications, demanding new technologies in the market.
References
Ali, N., Popovic, V. K., Warriner, K., & Zhu, Y. (2019). Effect of thermal, high hydrostatic pressure and ultraviolet-C processing on the microbial inactivation vitamins, chlorophyll, antioxidants, enzyme activity, and color of wheatgrass juice. Journal of Food Process Engineering, 43, 1-8. doi: 10.1111/jfpe.13036
Bahrami, N., Bayliss, D., Chope, G., Penson, S., Perehinec, T., & Fisk, I. D. (2016). Cold plasma: A new technology to modify wheat flour functionality. Food Chemistry, 202, 247-253. doi: 10.1016/j.foodchem.2016.01.113
Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., & Keener, K. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 36(16), 615-626. doi: 10.1016/j.tibtech.2017.11.001
Bourke, P., Ziuzina, D., Han, L., Cullen, P. J., & Gilmore, B. F. (2017). Microbiological interactions with cold plasma. Journal of Applied Microbiology, 123, 308-324. doi: 10.1111/jam.13429
Cebrián, G., Mañas, P., & Condón, S. (2016). Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation. Frontiers in Microbiology, 7, 1-17. doi: 10.3389/fmicb.2016.00734
Christofi, S., Dimitris, M., Katsaros, G., Panagou, E., & Kallithraka, S. (2020). Limit S02 content of wines by applying High Hydrostatic Pressure, 62, 1-10. doi: 10.1016/j.ifset.2020.102342
Delben, J. A., Zago, C. E., Tyhovych, N., Duarte, S., & Vergani, C. E. (2016). Effect of Atmospheric-Pressure Cold Plasma on Pathogenic Oral Biofilms and In Vitro Reconstituted Oral Epithelium. Plos One, 11(5), 1-18. doi: 10.1371/journal.pone.0155427
Dermesonlouoglou, E., Zachariou, I., Andreou, V., & Taoukis, P. S. (2016). Effect of pulsed electric fields on mass transfer and quality of osmotically dehydrated kiwifruit. Food and Bioproducts Processing, 100, 535-544. doi: 10.1016/j.fbp.2016.08.009.
Devi, Y., Thirumdas, R., Sarangapani, C., Deshmukh, R. R., & Annapure, U. S. (2017). Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control, 77, 187-191. doi: 10.1016/j.foodcont.2017.02.019
Dimitrakellis, P., & Gogolides, E. (2018). Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review. Advances in Colloid and Interface Science, 254, 1-21. doi: 10.1016/j.cis.2018.03.009
Fernánez-Jalao, I., Balderas, C., Sánchez-Moreno, C., & De Ancos, B. (2020). Impact of an in vitro dynamic gastrointestinal digestion on phenolic compunds and antioxidant capacity of apple treated by high-pressure processing. Innovative Food Science & Emerging Technologies, 66, 1-12. doi: 10.1016/j.ifset.2020.102486
Franck, M., Perreault, V., Suwal, S., Marciniak, A., Bazinet, L., & Doyen, A. (2019). High hydrostatic pressure-assisted enzymatic hydrolysis improved protein digestion of flaxseed protein isolate and generation of peptide with antioxidant activity. Food Research International, 115, 467-473. doi: 10.1016/j.foodres.2018.10.034
Gabrić, D., Barba, F., Roohinejad, S., Gharibzahedi, S. M. T., Radojčin, M., Putnik, P., & Kovačević, D. B. (2017). Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: a review. Journal of Food Process Engineering, 41(1), 1-14. doi: 10.1111/jfpe.12638
Gavahian, M., Chu, Y.-H., Khaneghah, A. M., Barba, F. J., Misra, N. N. (2018). A critical analysis of the cold plasma induced lipid oxidation in foods. Trends in Food Science and Technology, 77, 32-41. doi: 10.1016/j.tifs.2018.04.009
Golberg, A., Sack, M., Teissie, J., Pataro, G., Pliquett, U., Saulis, G., Stefan, T., Miklavcic, D., Vorobiev, E., & Frey, W. (2016). Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnology for Biofuels, 9(1), 1-22. doi: 10.1186/s13068-016-0508-z
Gómez, B., Munekata, P. E. S., Gavahian, M., Barba, F. J., Martí-Quijal, F. J.., Bolumar, T., Campagnol, P. C. B., Tomasevic, I., & Lorenzo, J. M. (2019). Application of pulsed electric fields in meat and fish processing industries: an overview. Food Research International, 123, 95-105. doi: 10.1016/j.foodres.2019.04.047
Han, L., Patil, S., Boehm, D., Milosavljevic, V., Cullen, P. J., & Bourke, P. (2015). Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology¸ 82(2), 450-458. doi: 10.1128/AEM.02660-15
Hanna, H., Denzi, A., Liberti, M., André, F. M., & Mir, L. M. (2017). Electropermeabilization of Inner and Outer Cell Membranes with Microsecond Pulsed Electric Fields: quantitative study with calcium ions. Scientific Reports, 7(1). doi: 10.1038/s41598-017-12960-w
Huang, H.-W., Hsu, C.-P., & Wang, C.-Y. (2020). Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis, 28(1), 1-13. doi: 10.1016/j.jfda.2019.10.002
Lee, H., Shahbaz, H. M., Ha, N., Kim, J. U., Lee, S. J., & Park, J. (2020). Development of ginseng powder using high hydrostatic pressure treatment combined with UV-TiO2 photocatalysis. The Korean Society of Ginseng, 44(1), 154-160. doi: 10.1016/j.jgr.2018.11.004
Lee, H., Song, K. B., Choi, E. J., Kim, H. K., Park, H. W., & Chun, H. H. (2019). Combined effects of high hydrostatic pressure treatment and red ginseng concentrate supplementation on the inactivation of foodborne pathogens and the quality of ready-to-use kimchi sauce. LWT – Food Science and Technology, 114(1), 1-9. doi: 10.1016/j.lwt.2019.108410
Lee K. H., Kim, H.-J., Woo, K. S., Jo, C., Kim, J.-K., Kim S. H., Park, H, Y., Oh, S.-K., & Kim, W. H. (2016). Evaluation of cold plasma treatments for improved microbial andphysicochemical qualities of brown rice. Food Science and Technology, 73, 442-447. doi: 10.1016/j.lwt.2016.06.055
Leong, S. Y., Burritt, D. J., & Oey, I. (2016). Evaluation of the anthocyanin release and health-promoting properties of Pinot Noir grape juices after pulsed electric fields. Food Chemistry, 196, 833-841. doi: 10.1016/j.foodchem.2015.10.025
Liao, X., Li, J., Muhammad, A. I., Suo, Y., Chen, S., Ye, D. L., & Ding, T. (2018). Application of a Dielectric Barrier Discharge Atmospheric Cold Plasma (Dbd-Acp) for Eshcerichia Coli Inactivation in Apple Juice. Food Science, 83(2), 801-408. doi: 10.1111/1750-3841.14045
Mai-Prochnow, A., Clauson, M., Hong, J., & Murphy, A. B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports. doi: 10.1038/srep38610
Mandal, R., Singh, A., & Singh, A. P. (2018). Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science and Technology, 80, 93-103. doi: 10.1016/j.tifs.2018.07.014
Marciniak, A., Suwal, S., Naderi, N., Pouliot, Y., & Doyen, A. (2018). Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science & Technology, 80(1), 187-198. doi: 10.1016/j.tifs.2018.08.013
Min, M. C., Roh, S. H., Niemira, B. A., Sites, J. ., Boyd, G., & Lacombe, A. (2016). Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. International Journal of Food Microbiology, 237, 114-120. doi: 10.1016/j.ijfoodmicro.2016.08.025
Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science and Technology, 55, 39-47. doi: 10.1016/j.tifs.2016.07.001
Misra, N. N., Yafav, B., Roopesh, M. S., & Jo, C. (2019). Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Comprehensive Reviews in Food Science and Food Safety, 18(1), 106-120. doi: 10.1111/1541-4337.12398
Mok, I., Nguyen, T. T. H., Kim, D. H., Lee, J. W., Lim, S., Jung, H., Lim, T., Pal, K., & Kim, D. (2020). Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure. Enzyme and Microbial Technology, 140(1), 1-9. doi: 10.1016/j.enzmictec.2020.109630
Oh, Y. A., Roh, S. H., & Min, S. C. (2016). Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocollids, 58, 150-159. doi: 10.1016/j.foodhyd.2016.02.022
Pankaj, S. H., Wan, Z., Colonna, W., & Keener, K. M. (2017). Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture, 97(12), 4016-4021. doi: 10.1002/jsfa.8268
Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7, 1-21. doi: 10.3390/foods7010004
Pasquali, F., Stratakos, A. C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., Mancusi, R., Manfreda, G., & Trevisani, M. (2016). Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control, 60, 552-559. doi: 10.1016/j.foodcont.2015.08.043
Pillet, F., Formosa-Dague, C., Baaziz, H., Dague, E., & Rols, M.-P. (2016). Cell wall as a target for bacteria inactivation by pulsed electric fields. Scientific Reports, 6(1), 1-8. doi: 10.1038/srep19778
Redondo, D., Venturini, M. E., Luengo, E., Raso, J., & Arias, E. (2018). Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innovative Food Science & Emerging Technologies, 45, 335-343. doi: 10.1016/j.ifset.2017.12.004
Ricci, A., Parpinello, G. P., & Versari, A. (2018). Recent Advances and Applications of Pulsed Electric Fields (PEF) to Improve Polyphenol Extraction and Color Release during Red Winemaking. Beverages, 4(1), 1-12. doi: 10.3390/beverages4010018
Sarangapani, C., Misra, N. N., Milosavljevic, V., Bourke, P., O’Regan, F., & Cullen, P. J. (2016). Pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering, 9, 225-232. doi: 10.1016/j.jwpe.2016.01.003
Sarangapani, C., O’Toole, G., Cullen, P. J., & Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies, 44, 235-241. doi: 10.1016/j.ifset.2017.02.012.
Shi, H., Heleji, K., Stroshine, R. L., Keener, K., & Jensen, J. L. (2017). Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol, 10, 1042-1052. doi: 10.1007/s11947-017-1873-8
Sitzmann, W., Vorobiev, E., & Lebovka, N. (2016). Applications of electricity and specifically pulsed electric fields in food processing: historical backgrounds. Innovative Food Science & Emerging Technologies, 37, 302-311. doi: 10.1016/j.ifset.2016.09.021
Soares, S. V., Picolli, I. R. A., & Casagrande, J. (2018). Pesquisa Bibliográfica. Pesquisa Bibliométrica, Artigo de Revisão e Ensaio Teórico em Administração e Contabilidade. Administração: Ensino e Pesquisa, 19(2), 308-339. doi: 10.13058/raep.2018.v19n2.970
Soliva-Fortuny, R., Vendrell-Pacheco, M., Martín-Belloso, O., & Elez-Martínez, P. (2016). Effect of pulsed electric fields on the antioxidant potential of apples stored at different temperatures. Postharvest Biology and Technology, 132, 195-201. doi: 10.1016/j.postharvbio.2017.03.015
Souza, V. R. D., Popovic, V., Bissonnette, S., Ros, I., Duizer, L., Warriner, K., & Koutchma, T. (2020). Quality changes in cold pressed juices after processing by high hydrostatic pressure, ultraviolet-c light and thermal treatment at commercial regimes. Innovative Food Science & Emerging Technologies, 64(1), 1-11. doi: 10.1016/j.ifset.2020.102398
Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P. (2016). Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies, 33, 225-233. doi: 10.1016/j.ifset.2015.12.022
Tao, Z., Sun, D.-W., Górecki, A., Blaszczak, W., Lamparski, G., Amarowicz, R. F., & Józef, J. (2016). A preliminary study about the influence of high hydrostatic pressure processing in parallel with oak chip maceration on the physicochemical and sensory properties of a young red wine. Food Chemistry, 194(1), 545-554. doi: 10.1016/j.foodchem.2015.07.041
Traffano-Schiffo, M. V., Tylewicz, U., Castro-Giraldez, M., Fito, P. J., Ragni, L., & Rosa, M. D. (2016). Effect of pulsed electric fields pre-treatment on mass transport during the osmotic dehydration of organic kiwifruit. Innovative Food Science & Emerging Technologies, 38, 243-251. doi: 10.1016/j.ifset.2016.10.011
Thirumdas, R., Saragapani, C., Ajinkya, M. T., Deshmukh, R. R., & Annapure, U. S. (2016). Influence of low pressure cold plasma on cooking and textural properties. Innovative Food Sciende and Emerging Technologies, 37, 53-60. doi: 10.1016/j.ifset.2016.08.009
Thirumdas, R., Trimukhe, A., Deshmukh, R. R., & Annapure, U. S. (2016). Functional and rheological properties of cold plasma treated ricestarch. Carbohydrate Polymers, 157, 1723-1731. doi: 10.1016/j.carbpol.2016.11.050
Wang, L.-H., Wang, M.-S., Zeng, X.-A., & Liu, Z.-W. (2016). Temperature-mediated variations in cellular membrane fatty acid composition of Staphylococcus aureus in resistance to pulsed electric fields. Biochimica et Biophysica Acta (Bba) - Biomembranes, 1858(8), 1791-1800. doi: 10.1016/j.bbamem.2016.05.003
Wu, L., Zhao, W., Yang, R., Yan, W., & Sun, Q. (2016). Aggregation of egg white proteins with pulsed electric fields and thermal processes. Journal of the Science of Food and Agriculture, 96(10), 3334-3341. doi: 10.1002/jsfa.7512
Xie, F., Zhang, W., Lan, X., Gong, S., Wu, J., & Wang, Z. (2018). Effects of high hydrostatic pressure and high pressure homogenization processing on characteristics of potato peel waste pectin. Carbohydrate Polymers, 196(1), 474-482. doi: 10.1016/j.carbpol.2018.05.061
Xu, L., Garner, A. L., Tao, B., & Keener, K. M. (2017). Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol, 10(10), 1778-1791. doi: 10.1007/s11947-017-1947-7
Zhang, Z.-H., Wang, L.-H., Zeng, X.-A., Han, Z., & Brennan, C. S. (2018). Non-thermal technologies and its current and future application in the food industry: a review. International Journal of Food Science & Technology, 54(1), 1-13. doi: 10.1111/ijfs.13903
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Maristela Mendes Aguiar; Glaucia Moreira de Almeida; Wander Luiz de Camargo Filho; Denes Kaic Alves do Rosário; Liliane Andrade Araújo; Emiliane Andrade Araújo Naves
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.