High hydrostatic pressure, pulsed electric fields and cold plasma in the food production chain: Principles and industrial applicability

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12670

Keywords:

High hydrostatic pressure; Pulsed electric field; Cold plasma; Non-thermal technologies.

Abstract

The search for non-thermal technologies has been gaining space in the market due to changes in consumers' eating habits and concern for preserving the environment. This technology is highly advantageous for the microbial decontamination of food products, including sporulates and pathogenic microorganisms. In this context, this review aimed at a systematic study of the literature on the main non-thermal technologies, using the databases of Science Direct and Web of Science, with the keyword “non-thermal technologies”. The selected articles were submitted for analysis using the Vosviewer software. After interpreting the density maps obtained in the software, it was noticed that the most studied non-thermal technologies, in the last five years (2015-2020), were the technologies of high hydrostatic pressure, pulsed electric field and cold plasma. The main highlights of the technologies were (i) reduction of the microbial load in the food, the cellular structure being an important factor in the inactivation of microorganisms, as well as (ii) the need for more sustainable industrial applications, demanding new technologies in the market.

References

Ali, N., Popovic, V. K., Warriner, K., & Zhu, Y. (2019). Effect of thermal, high hydrostatic pressure and ultraviolet-C processing on the microbial inactivation vitamins, chlorophyll, antioxidants, enzyme activity, and color of wheatgrass juice. Journal of Food Process Engineering, 43, 1-8. doi: 10.1111/jfpe.13036

Bahrami, N., Bayliss, D., Chope, G., Penson, S., Perehinec, T., & Fisk, I. D. (2016). Cold plasma: A new technology to modify wheat flour functionality. Food Chemistry, 202, 247-253. doi: 10.1016/j.foodchem.2016.01.113

Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., & Keener, K. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 36(16), 615-626. doi: 10.1016/j.tibtech.2017.11.001

Bourke, P., Ziuzina, D., Han, L., Cullen, P. J., & Gilmore, B. F. (2017). Microbiological interactions with cold plasma. Journal of Applied Microbiology, 123, 308-324. doi: 10.1111/jam.13429

Cebrián, G., Mañas, P., & Condón, S. (2016). Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation. Frontiers in Microbiology, 7, 1-17. doi: 10.3389/fmicb.2016.00734

Christofi, S., Dimitris, M., Katsaros, G., Panagou, E., & Kallithraka, S. (2020). Limit S02 content of wines by applying High Hydrostatic Pressure, 62, 1-10. doi: 10.1016/j.ifset.2020.102342

Delben, J. A., Zago, C. E., Tyhovych, N., Duarte, S., & Vergani, C. E. (2016). Effect of Atmospheric-Pressure Cold Plasma on Pathogenic Oral Biofilms and In Vitro Reconstituted Oral Epithelium. Plos One, 11(5), 1-18. doi: 10.1371/journal.pone.0155427

Dermesonlouoglou, E., Zachariou, I., Andreou, V., & Taoukis, P. S. (2016). Effect of pulsed electric fields on mass transfer and quality of osmotically dehydrated kiwifruit. Food and Bioproducts Processing, 100, 535-544. doi: 10.1016/j.fbp.2016.08.009.

Devi, Y., Thirumdas, R., Sarangapani, C., Deshmukh, R. R., & Annapure, U. S. (2017). Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control, 77, 187-191. doi: 10.1016/j.foodcont.2017.02.019

Dimitrakellis, P., & Gogolides, E. (2018). Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review. Advances in Colloid and Interface Science, 254, 1-21. doi: 10.1016/j.cis.2018.03.009

Fernánez-Jalao, I., Balderas, C., Sánchez-Moreno, C., & De Ancos, B. (2020). Impact of an in vitro dynamic gastrointestinal digestion on phenolic compunds and antioxidant capacity of apple treated by high-pressure processing. Innovative Food Science & Emerging Technologies, 66, 1-12. doi: 10.1016/j.ifset.2020.102486

Franck, M., Perreault, V., Suwal, S., Marciniak, A., Bazinet, L., & Doyen, A. (2019). High hydrostatic pressure-assisted enzymatic hydrolysis improved protein digestion of flaxseed protein isolate and generation of peptide with antioxidant activity. Food Research International, 115, 467-473. doi: 10.1016/j.foodres.2018.10.034

Gabrić, D., Barba, F., Roohinejad, S., Gharibzahedi, S. M. T., Radojčin, M., Putnik, P., & Kovačević, D. B. (2017). Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: a review. Journal of Food Process Engineering, 41(1), 1-14. doi: 10.1111/jfpe.12638

Gavahian, M., Chu, Y.-H., Khaneghah, A. M., Barba, F. J., Misra, N. N. (2018). A critical analysis of the cold plasma induced lipid oxidation in foods. Trends in Food Science and Technology, 77, 32-41. doi: 10.1016/j.tifs.2018.04.009

Golberg, A., Sack, M., Teissie, J., Pataro, G., Pliquett, U., Saulis, G., Stefan, T., Miklavcic, D., Vorobiev, E., & Frey, W. (2016). Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnology for Biofuels, 9(1), 1-22. doi: 10.1186/s13068-016-0508-z

Gómez, B., Munekata, P. E. S., Gavahian, M., Barba, F. J., Martí-Quijal, F. J.., Bolumar, T., Campagnol, P. C. B., Tomasevic, I., & Lorenzo, J. M. (2019). Application of pulsed electric fields in meat and fish processing industries: an overview. Food Research International, 123, 95-105. doi: 10.1016/j.foodres.2019.04.047

Han, L., Patil, S., Boehm, D., Milosavljevic, V., Cullen, P. J., & Bourke, P. (2015). Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology¸ 82(2), 450-458. doi: 10.1128/AEM.02660-15

Hanna, H., Denzi, A., Liberti, M., André, F. M., & Mir, L. M. (2017). Electropermeabilization of Inner and Outer Cell Membranes with Microsecond Pulsed Electric Fields: quantitative study with calcium ions. Scientific Reports, 7(1). doi: 10.1038/s41598-017-12960-w

Huang, H.-W., Hsu, C.-P., & Wang, C.-Y. (2020). Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis, 28(1), 1-13. doi: 10.1016/j.jfda.2019.10.002

Lee, H., Shahbaz, H. M., Ha, N., Kim, J. U., Lee, S. J., & Park, J. (2020). Development of ginseng powder using high hydrostatic pressure treatment combined with UV-TiO2 photocatalysis. The Korean Society of Ginseng, 44(1), 154-160. doi: 10.1016/j.jgr.2018.11.004

Lee, H., Song, K. B., Choi, E. J., Kim, H. K., Park, H. W., & Chun, H. H. (2019). Combined effects of high hydrostatic pressure treatment and red ginseng concentrate supplementation on the inactivation of foodborne pathogens and the quality of ready-to-use kimchi sauce. LWT – Food Science and Technology, 114(1), 1-9. doi: 10.1016/j.lwt.2019.108410

Lee K. H., Kim, H.-J., Woo, K. S., Jo, C., Kim, J.-K., Kim S. H., Park, H, Y., Oh, S.-K., & Kim, W. H. (2016). Evaluation of cold plasma treatments for improved microbial andphysicochemical qualities of brown rice. Food Science and Technology, 73, 442-447. doi: 10.1016/j.lwt.2016.06.055

Leong, S. Y., Burritt, D. J., & Oey, I. (2016). Evaluation of the anthocyanin release and health-promoting properties of Pinot Noir grape juices after pulsed electric fields. Food Chemistry, 196, 833-841. doi: 10.1016/j.foodchem.2015.10.025

Liao, X., Li, J., Muhammad, A. I., Suo, Y., Chen, S., Ye, D. L., & Ding, T. (2018). Application of a Dielectric Barrier Discharge Atmospheric Cold Plasma (Dbd-Acp) for Eshcerichia Coli Inactivation in Apple Juice. Food Science, 83(2), 801-408. doi: 10.1111/1750-3841.14045

Mai-Prochnow, A., Clauson, M., Hong, J., & Murphy, A. B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports. doi: 10.1038/srep38610

Mandal, R., Singh, A., & Singh, A. P. (2018). Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science and Technology, 80, 93-103. doi: 10.1016/j.tifs.2018.07.014

Marciniak, A., Suwal, S., Naderi, N., Pouliot, Y., & Doyen, A. (2018). Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science & Technology, 80(1), 187-198. doi: 10.1016/j.tifs.2018.08.013

Min, M. C., Roh, S. H., Niemira, B. A., Sites, J. ., Boyd, G., & Lacombe, A. (2016). Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. International Journal of Food Microbiology, 237, 114-120. doi: 10.1016/j.ijfoodmicro.2016.08.025

Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science and Technology, 55, 39-47. doi: 10.1016/j.tifs.2016.07.001

Misra, N. N., Yafav, B., Roopesh, M. S., & Jo, C. (2019). Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Comprehensive Reviews in Food Science and Food Safety, 18(1), 106-120. doi: 10.1111/1541-4337.12398

Mok, I., Nguyen, T. T. H., Kim, D. H., Lee, J. W., Lim, S., Jung, H., Lim, T., Pal, K., & Kim, D. (2020). Enhancement of neuroprotection, antioxidant capacity, and water-solubility of crocins by transglucosylation using dextransucrase under high hydrostatic pressure. Enzyme and Microbial Technology, 140(1), 1-9. doi: 10.1016/j.enzmictec.2020.109630

Oh, Y. A., Roh, S. H., & Min, S. C. (2016). Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocollids, 58, 150-159. doi: 10.1016/j.foodhyd.2016.02.022

Pankaj, S. H., Wan, Z., Colonna, W., & Keener, K. M. (2017). Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture, 97(12), 4016-4021. doi: 10.1002/jsfa.8268

Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7, 1-21. doi: 10.3390/foods7010004

Pasquali, F., Stratakos, A. C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., Mancusi, R., Manfreda, G., & Trevisani, M. (2016). Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control, 60, 552-559. doi: 10.1016/j.foodcont.2015.08.043

Pillet, F., Formosa-Dague, C., Baaziz, H., Dague, E., & Rols, M.-P. (2016). Cell wall as a target for bacteria inactivation by pulsed electric fields. Scientific Reports, 6(1), 1-8. doi: 10.1038/srep19778

Redondo, D., Venturini, M. E., Luengo, E., Raso, J., & Arias, E. (2018). Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innovative Food Science & Emerging Technologies, 45, 335-343. doi: 10.1016/j.ifset.2017.12.004

Ricci, A., Parpinello, G. P., & Versari, A. (2018). Recent Advances and Applications of Pulsed Electric Fields (PEF) to Improve Polyphenol Extraction and Color Release during Red Winemaking. Beverages, 4(1), 1-12. doi: 10.3390/beverages4010018

Sarangapani, C., Misra, N. N., Milosavljevic, V., Bourke, P., O’Regan, F., & Cullen, P. J. (2016). Pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering, 9, 225-232. doi: 10.1016/j.jwpe.2016.01.003

Sarangapani, C., O’Toole, G., Cullen, P. J., & Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies, 44, 235-241. doi: 10.1016/j.ifset.2017.02.012.

Shi, H., Heleji, K., Stroshine, R. L., Keener, K., & Jensen, J. L. (2017). Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol, 10, 1042-1052. doi: 10.1007/s11947-017-1873-8

Sitzmann, W., Vorobiev, E., & Lebovka, N. (2016). Applications of electricity and specifically pulsed electric fields in food processing: historical backgrounds. Innovative Food Science & Emerging Technologies, 37, 302-311. doi: 10.1016/j.ifset.2016.09.021

Soares, S. V., Picolli, I. R. A., & Casagrande, J. (2018). Pesquisa Bibliográfica. Pesquisa Bibliométrica, Artigo de Revisão e Ensaio Teórico em Administração e Contabilidade. Administração: Ensino e Pesquisa, 19(2), 308-339. doi: 10.13058/raep.2018.v19n2.970

Soliva-Fortuny, R., Vendrell-Pacheco, M., Martín-Belloso, O., & Elez-Martínez, P. (2016). Effect of pulsed electric fields on the antioxidant potential of apples stored at different temperatures. Postharvest Biology and Technology, 132, 195-201. doi: 10.1016/j.postharvbio.2017.03.015

Souza, V. R. D., Popovic, V., Bissonnette, S., Ros, I., Duizer, L., Warriner, K., & Koutchma, T. (2020). Quality changes in cold pressed juices after processing by high hydrostatic pressure, ultraviolet-c light and thermal treatment at commercial regimes. Innovative Food Science & Emerging Technologies, 64(1), 1-11. doi: 10.1016/j.ifset.2020.102398

Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P. (2016). Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies, 33, 225-233. doi: 10.1016/j.ifset.2015.12.022

Tao, Z., Sun, D.-W., Górecki, A., Blaszczak, W., Lamparski, G., Amarowicz, R. F., & Józef, J. (2016). A preliminary study about the influence of high hydrostatic pressure processing in parallel with oak chip maceration on the physicochemical and sensory properties of a young red wine. Food Chemistry, 194(1), 545-554. doi: 10.1016/j.foodchem.2015.07.041

Traffano-Schiffo, M. V., Tylewicz, U., Castro-Giraldez, M., Fito, P. J., Ragni, L., & Rosa, M. D. (2016). Effect of pulsed electric fields pre-treatment on mass transport during the osmotic dehydration of organic kiwifruit. Innovative Food Science & Emerging Technologies, 38, 243-251. doi: 10.1016/j.ifset.2016.10.011

Thirumdas, R., Saragapani, C., Ajinkya, M. T., Deshmukh, R. R., & Annapure, U. S. (2016). Influence of low pressure cold plasma on cooking and textural properties. Innovative Food Sciende and Emerging Technologies, 37, 53-60. doi: 10.1016/j.ifset.2016.08.009

Thirumdas, R., Trimukhe, A., Deshmukh, R. R., & Annapure, U. S. (2016). Functional and rheological properties of cold plasma treated ricestarch. Carbohydrate Polymers, 157, 1723-1731. doi: 10.1016/j.carbpol.2016.11.050

Wang, L.-H., Wang, M.-S., Zeng, X.-A., & Liu, Z.-W. (2016). Temperature-mediated variations in cellular membrane fatty acid composition of Staphylococcus aureus in resistance to pulsed electric fields. Biochimica et Biophysica Acta (Bba) - Biomembranes, 1858(8), 1791-1800. doi: 10.1016/j.bbamem.2016.05.003

Wu, L., Zhao, W., Yang, R., Yan, W., & Sun, Q. (2016). Aggregation of egg white proteins with pulsed electric fields and thermal processes. Journal of the Science of Food and Agriculture, 96(10), 3334-3341. doi: 10.1002/jsfa.7512

Xie, F., Zhang, W., Lan, X., Gong, S., Wu, J., & Wang, Z. (2018). Effects of high hydrostatic pressure and high pressure homogenization processing on characteristics of potato peel waste pectin. Carbohydrate Polymers, 196(1), 474-482. doi: 10.1016/j.carbpol.2018.05.061

Xu, L., Garner, A. L., Tao, B., & Keener, K. M. (2017). Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol, 10(10), 1778-1791. doi: 10.1007/s11947-017-1947-7

Zhang, Z.-H., Wang, L.-H., Zeng, X.-A., Han, Z., & Brennan, C. S. (2018). Non-thermal technologies and its current and future application in the food industry: a review. International Journal of Food Science & Technology, 54(1), 1-13. doi: 10.1111/ijfs.13903

Published

26/02/2021

How to Cite

AGUIAR, M. M.; ALMEIDA, G. M. de; CAMARGO FILHO, W. L. de; ROSÁRIO, D. K. A. do; ARAÚJO, L. A.; NAVES, E. A. A. . High hydrostatic pressure, pulsed electric fields and cold plasma in the food production chain: Principles and industrial applicability . Research, Society and Development, [S. l.], v. 10, n. 2, p. e50310212670, 2021. DOI: 10.33448/rsd-v10i2.12670. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12670. Acesso em: 13 nov. 2024.

Issue

Section

Review Article