Graphene: A new technology for agriculture

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12827

Keywords:

Graphene; Graphene oxide; Agriculture; Nanomaterials; Carbon.

Abstract

This article presents a review on the use of graphene in various segments, elucidating that this product can be used in various industrial sectors. These include mainly agriculture (as in large crops of high relevance, such as coffee), the food industry and the environment, as a plant growth stimulator and in fertilizers, nanoencapsulation and smart-release systems, antifungal and antibacterial agents, smart packaging, water treatment and ultrafiltration, contaminant removal, pesticide and insecticide quantitation, detection systems and precision agriculture. However, some challenges can be overcome before the graphene-based nanoparticle is used on a large scale. In this way, before using the product in the environment, it is necessary to determine whether the technology is safe for the soil-plant system and consumers. Furthermore, the cost of its use can also be a limiting factor depending on the level applied. Therefore, this review proposes to examine the diverse literature to explain the effects of the use of graphene in agriculture, plants and soil microorganisms. Accordingly, this article discusses and presents the possibilities of application of graphene in agriculture, plants and soil microorganisms.

Author Biography

André May, Embrapa

Pesquisador Embrapa Meio Ambiente

References

Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731-5436. https://doi.org/10.1021/nn101390x

Andelkovic, I. B., Kabiri, S., Tavakkoli, E., Kirby, J. K., McLaughlin, M. J., & Losic, D. (2018). Graphene oxide-Fe(III) composite containing phosphate – A novel slow release fertilizer for improved agriculture management. Journal of Cleaner Production, 185(Iii), 97–104. https://doi.org/10.1016/j.jclepro.2018.03.050

Anjum, N. A., Singh, N., Singh, M. K., Sayeed, I., Duarte, A. C., Pereira, E., & Ahmad, I. (2014). Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Science of the Total Environment, 472, 834-841. https://doi.org/10.1016/j.scitotenv.2013.11.018

Anjum, N. A., Singh, N., Singh, M. K., Shah, Z. A., Duarte, A. C., Pereira, E., & Ahmad, I. (2013). Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). Journal of Nanoparticle Research, 15(7), 1-12. https://doi.org/10.1007/s11051-013-1770-7

Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902-907. https://doi.org/10.1021/nl0731872

Begum, P., Ikhtiari, R., & Fugetsu, B. (2011). Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon, 49(12), 3907-3919. https://doi.org/10.1016/j.carbon.2011.05.029

Brownson, D. A. C., Kampouris, D. K., & Banks, C. E. (2012). Graphene electrochemistry: Fundamental concepts through to prominent applications. In Chemical Society Review, 41(21), 6944-6976. https://doi.org/10.1039/c2cs35105f

Cai, X., Tan, S., Yu, A., Zhang, J., Liu, J., Mai, W., & Jiang, Z. (2012). Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity. Chemistry - An Asian Journal, 7(7), 1664-1670. https://doi.org/10.1002/asia.201200045

Chakravarty, D., Erande, M. B., & Late, D. J. (2015). Graphene quantum dots as enhanced plant growth regulators: Effects on coriander and garlic plants. Journal of the Science of Food and Agriculture, 95(13), 2772–2778. https://doi.org/10.1002/jsfa.7106

Chen, J., Peng, H., Wang, X., Shao, F., Yuan, Z., & Han, H. (2014). Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 6(3), 1879-1889. https://doi.org/10.1039/c3nr04941h

Chen, J., Sun, L., Cheng, Y., Lu, Z., Shao, K., Li, T., Hu, C., & Han, H. (2016). Graphene Oxide-Silver Nanocomposite: Novel Agricultural Antifungal Agent against Fusarium graminearum for Crop Disease Prevention. ACS Applied Materials and Interfaces, 8(36), 24057-24070. https://doi.org/10.1021/acsami.6b05730

Chen, M., Qin, X., & Zeng, G. (2017). Biodegradation of Carbon Nanotubes, Graphene, and Their Derivatives. In Trends in Biotechnology, 35(9), 836-846. https://doi.org/10.1016/j.tibtech.2016.12.001

Cheng, F., Liu, Y. F., Lu, G. Y., Zhang, X. K., Xie, L. L., Yuan, C. F., & Xu, B. B. (2016). Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. Journal of Plant Physiology, 193, 57-63. https://doi.org/10.1016/j.jplph.2016.02.011

Choi, J. T., Kim, D. H., Ryu, K. S., Lee, H. Il, Jeong, H. M., Shin, C. M., Kim, J. H., & Kim, B. K. (2011). Functionalized graphene sheet/polyurethane nanocomposites: Effect of particle size on physical properties. Macromolecular Research, 19(8), 809-814. https://doi.org/10.1007/s13233-011-0801-4

Ćirić, L., Sienkiewicz, A., Djokić, D. M., Smajda, R., Magrez, A., Kaspar, T., Nesper, R., & Forró, L. (2010). Size dependence of the magnetic response of graphite oxide and graphene flakes - an electron spin resonance study. Physica Status Solidi (B) Basic Research, 247(11-12), 2958-2961. https://doi.org/10.1002/pssb.201000448

Combarros, R. G., Collado, S., & Díaz, M. (2016). Toxicity of graphene oxide on growth and metabolism of Pseudomonas putida. Journal of Hazardous Materials, 310, 246-252. https://doi.org/10.1016/j.jhazmat.2016.02.038

Das, M. R., Sarma, R. K., Borah, S. C., Kumari, R., Saikia, R., Deshmukh, A. B., Shelke, M. V., Sengupta, P., Szunerits, S., & Boukherroub, R. (2013). The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloids and Surfaces B: Biointerfaces, 105, 128-136. https://doi.org/10.1016/j.colsurfb.2012.12.033

Du, S., Zhang, P., Zhang, R., Lu, Q., Liu, L., Bao, X., & Liu, H. (2016). Reduced graphene oxide induces cytotoxicity and inhibits photosynthetic performance of the green alga Scenedesmus obliquus. Chemosphere, 164, 499-507. https://doi.org/10.1016/j.chemosphere.2016.08.138

Faria, A. F., Martinez, D. S. T., Meira, S. M. M., de Moraes, A. C. M., Brandelli, A., Filho, A. G. S., & Alves, O. L. (2014). Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids and Surfaces B: Biointerfaces, 113, 115-124. https://doi.org/10.1016/j.colsurfb.2013.08.006

Forstner, C., Orton, T. G., Wang, P., Kopittke, P. M., & Dennis, P. G. (2019). Effects of carbon nanotubes and derivatives of graphene oxide on soil bacterial diversity. Science of the Total Environment, 682, 356-363. https://doi.org/10.1016/j.scitotenv.2019.05.162

Geng, H., Dai, J., Li, J., Di, Z., & Liu, X. (2016). Antibacterial ability and hemocompatibility of graphene functionalized germanium. Scientific Reports, 6(37474), 1-9. https://doi.org/10.1038/srep37474

Goodman, C. M., McCusker, C. D., Yilmaz, T., & Rotello, V. M. (2004). Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chemistry, 15(4), 897-900. https://doi.org/10.1021/bc049951i

Gurunathan, S. (2015). Cytotoxicity of graphene oxide nanoparticles on plant growth promoting rhizobacteria. Journal of Industrial and Engineering Chemistry, 32, 282-291. https://doi.org/10.1016/j.jiec.2015.08.027

Gurunathan, S., Han, J. W., Abdal Dayem, A., Eppakayala, V., & Kim, J. H. (2012). Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. International Journal of Nanomedicine, 7, 5901-5914. https://doi.org/10.2147/IJN.S37397

Homaeigohar, S., & Elbahri, M. (2017). Graphene membranes for water desalination. NPG Asia Materials, 9, 1-16. https://doi.org/10.1038/am.2017.135

Hou, M., Zang, X., Wang, C., & Wang, Z. (2013). The use of silica-coated magnetic graphene microspheres as the adsorbent for the extraction of pyrethroid pesticides from orange and lettuce samples followed by GC-MS analysis. Journal of Separation Science, 36(19), 3242-3248. https://doi.org/10.1002/jssc.201300656

Hu, X., Kang, J., Lu, K., Zhou, R., Mu, L., & Zhou, Q. (2014). Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Scientific Reports, 4(6122), 1-10. https://doi.org/10.1038/srep06122

Hu, X., Lu, K., Mu, L., Kang, J., & Zhou, Q. (2014). Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon, 80, 665-676. https://doi.org/10.1016/j.carbon.2014.09.010

Hu, X., & Zhou, Q. (2013). Health and ecosystem risks of graphene. In Chemical Reviews, 113(5), 3815-3835. https://doi.org/10.1021/cr300045n

Hu, X., & Zhou, Q. (2014). Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Scientific Reports, 10(1038), 1-9. https://doi.org/10.1038/srep03782

Hui, L., Piao, J. G., Auletta, J., Hu, K., Zhu, Y., Meyer, T., Liu, H., & Yang, L. (2014). Availability of the basal planes of graphene oxide determines whether it is antibacterial. ACS Applied Materials and Interfaces, 6(15), 13183-13190. https://doi.org/10.1021/am503070z

Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339. https://doi.org/10.1021/ja01539a017

Jain, R., & Mishra, S. (2016). Electrical and electrochemical properties of graphene modulated through surface functionalization. RSC Advances, 6(33), 27404–27415. https://doi.org/10.1039/c5ra26533a

Kabiri, S., Degryse, F., Tran, D. N. H., Da Silva, R. C., McLaughlin, M. J., & Losic, D. (2017). Graphene Oxide: A New Carrier for Slow Release of Plant Micronutrients. ACS Applied Materials and Interfaces, 9(49), 43325–43335. https://doi.org/10.1021/acsami.7b07890

Kim, M. J., Kim, W., & Chung, H. (2020). Effects of silver-graphene oxide on seed germination and early growth of crop species. PeerJ., 2020(1), 1-14. https://doi.org/10.7717/peerj.8387

Kurapati, R., Russier, J., Squillaci, M. A., Treossi, E., Ménard-Moyon, C., Del Rio-Castillo, A. E., Vazquez, E., Samorì, P., Palermo, V., & Bianco, A. (2015). Dispersibility-Dependent Biodegradation of Graphene Oxide by Myeloperoxidase. Small, 11(32), 3985-3994. https://doi.org/10.1002/smll.201500038

Lee, D. Y., Khatun, Z., Lee, J. H., Lee, Y. K., & In, I. (2011). Blood compatible graphene/heparin conjugate through noncovalent chemistry. Biomacromolecules, 12(2), 336-341. https://doi.org/10.1021/bm101031a

Lehner, B. A. E., Janssen, V. A. E. C., Spiesz, E. M., Benz, D., Brouns, S. J. J., Meyer, A. S., & van der Zant, H. S. J. (2019). Creation of Conductive Graphene Materials by Bacterial Reduction Using Shewanella Oneidensis. ChemistryOpen, 8(7), 888-895. https://doi.org/10.1002/open.201900186

Liang, Y., Yang, D., & Cui, J. (2017). A graphene oxide/silver nanoparticle composite as a novel agricultural antibacterial agent against Xanthomonas oryzae pv. oryzae for crop disease management. New Journal of Chemistry, 41, 13692-13699. https://doi.org/10.1039/c7nj02942j

Liu, Shangjie, Wei, H., Li, Z., Li, S., Yan, H., He, Y., & Tian, Z. (2015). Effects of graphene on germination and seedling morphology in rice. Journal of Nanoscience and Nanotechnology, 15(4), 2695-2701. https://doi.org/10.1166/jnn.2015.9254

Liu, Shaobin, Hu, M., Zeng, T. H., Wu, R., Jiang, R., Wei, J., Wang, L., Kong, J., & Chen, Y. (2012). Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir, 28(33), 12364-12372. https://doi.org/10.1021/la3023908

Liu, Shaobin, Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., Kong, J., & Chen, Y. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 5(9), 6971-6980. https://doi.org/10.1021/nn202451x

Lu, T., Xia, T., Qi, Y., Zhang, C., & Chen, W. (2017). Effects of clay minerals on transport of graphene oxide in saturated porous media. Environmental Toxicology and Chemistry, 36(3), 655-660. https://doi.org/10.1002/etc.3605

Luo, J., Cote, L. J., Tung, V. C., Tan, A. T. L., Goins, P. E., Wu, J., & Huang, J. (2010). Graphene oxide nanocolloids. Journal of the American Chemical Society, 50, 17667-17669. https://doi.org/10.1021/ja1078943

Ma, L., Zhu, Z., Su, M., Ma, L., Liu, D., & Wang, Z. (2013). Preparation of graphene oxide-silver nanoparticle nanohybrids with highly antibacterial capability. Talanta, 117, 449-455. https://doi.org/10.1016/j.talanta.2013.09.017

Mangadlao, J. D., Santos, C. M., Felipe, M. J. L., De Leon, A. C. C., Rodrigues, D. F., & Advincula, R. C. (2015). On the antibacterial mechanism of graphene oxide (GO) Langmuir-Blodgett films. Chemical Communications, 51, 2886-2889. https://doi.org/10.1039/c4cc07836e

Mejías Carpio, I. E., Santos, C. M., Wei, X., & Rodrigues, D. F. (2012). Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale, 12, 4746-4756. https://doi.org/10.1039/c2nr30774j

Möhler, J. S., Sim, W., Blaskovich, M. A. T., Cooper, M. A., & Ziora, Z. M. (2018). Silver bullets: A new lustre on an old antimicrobial agent. In Biotechnology Advances, 36(5), 1391-1411. https://doi.org/10.1016/j.biotechadv.2018.05.004

Nair, R., Mohamed, M. S., Gao, W., Maekawa, T., Yoshida, Y., Ajayan, P. M., & Kumar, D. S. (2012). Effect of carbon nanomaterials on the germination and growth of rice plants. Journal of Nanoscience and Nanotechnology, 12(3), 2212-2220. https://doi.org/10.1166/jnn.2012.5775

Nika, D. L., Askerov, A. S., & Balandin, A. A. (2012). Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Letters, 12(6), 3238-3244. https://doi.org/10.1021/nl301230g

Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451-10453. https://doi.org/10.1073/pnas.0502848102

Ocsoy, I., Paret, M. L., Ocsoy, M. A., Kunwar, S., Chen, T., You, M., & Tan, W. (2013). Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano, 7(10), 8972-8980. https://doi.org/10.1021/nn4034794

Park, S., Choi, K. S., Kim, S., Gwon, Y., & Kim, J. (2020). Graphene Oxide-Assisted Promotion of Plant Growth and Stability. 10(758), 1–11. https://doi.org/10.3390/nano10040758

Perreault, F., Faria, A. F., Nejati, S., & Elimelech, M. (2015). Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. ACS Nano, 9(7), 7226-7236. https://doi.org/10.1021/acsnano.5b02067

Prasad, K., Lekshmi, G. S., Ostrikov, K., Lussini, V., Blinco, J., Mohandas, M., Vasilev, K., Bottle, S., Bazaka, K., & Ostrikov, K. (2017). Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Scientific Reports, 7(1591), 1-11. https://doi.org/10.1038/s41598-017-01669-5

Ren, W., Chang, H., & Teng, Y. (2016). Sulfonated graphene-induced hormesis is mediated through oxidative stress in the roots of maize seedlings. Science of the Total Environment, 1(572), 926-934. https://doi.org/10.1016/j.scitotenv.2016.07.214

Ren, W., Ren, G., Teng, Y., Li, Z., & Li, L. (2015). Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community. Journal of Hazardous Materials, 297, 286-294. https://doi.org/10.1016/j.jhazmat.2015.05.017

Sawangphruk, M., Srimuk, P., Chiochan, P., Sangsri, T., & Siwayaprahm, P. (2012). Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon, 50(14), 5156–5161. https://doi.org/10.1016/j.carbon.2012.06.056

Seo, J. W. T., Green, A. A., Antaris, A. L., & Hersam, M. C. (2011). High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers. Journal of Physical Chemistry Letters, 2(9), 1004-1008. https://doi.org/10.1021/jz2003556

Shao, W., Liu, X., Min, H., Dong, G., Feng, Q., & Zuo, S. (2015). Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Applied Materials and Interfaces, 7(12), 6966-6973. https://doi.org/10.1021/acsami.5b00937

Shen, S., Liu, Y., Wang, F., Yao, G., Xie, L., & Xu, B. (2019). Graphene Oxide Regulates Root Development and Influences IAA Concentration in Rice. Journal of Plant Growth Regulation, 38, 241-248. https://doi.org/10.1007/s00344-018-9836-5

Soldano, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of graphene. In Carbon, 48, 2127-2150. https://doi.org/10.1016/j.carbon.2010.01.058

Somanathan, T., Prasad, K., Ostrikov, K. K., Saravanan, A., & Krishna, V. M. (2015). Graphene oxide synthesis from agro waste. Nanomaterials, 5(2), 826-834. https://doi.org/10.3390/nano5020826

Song, B., Tang, J., Zhen, M., & Liu, X. (2019). Influence of graphene oxide and biochar on anaerobic degradation of petroleum hydrocarbons. Journal of Bioscience and Bioengineering, 128(1), 72-79. https://doi.org/10.1016/j.jbiosc.2019.01.006

Song, J., Duan, C., Sang, Y., Wu, S., Ru, J., & Cui, X. (2018). Effects of graphene on bacterial community diversity and soil environments of Haplic Cambisols in Northeast China. Forests, 9(677) 1-18. https://doi.org/10.3390/f9110677

Sundramoorthy, A. K., Vignesh Kumar, T. H., & Gunasekaran, S. (2018). Graphene-Based Nanosensors and Smart Food Packaging Systems for Food Safety and Quality Monitoring. In Graphene Bioelectronics, 2018, 267-306. https://doi.org/10.1016/B978-0-12-813349-1.00012-3

Surwade, S. P., Smirnov, S. N., Vlassiouk, I. V., Unocic, R. R., Veith, G. M., Dai, S., & Mahurin, S. M. (2015). Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 10(5), 459-464. https://doi.org/10.1038/nnano.2015.37

Tang, J., Chen, Q., Xu, L., Zhang, S., Feng, L., Cheng, L., Xu, H., Liu, Z., & Peng, R. (2013). Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Applied Materials and Interfaces, 5(9), 3867-3874. https://doi.org/10.1021/am4005495

Wang, D., Wang, G., Zhang, G., Xu, X., & Yang, F. (2013). Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal. Bioresource Technology, 131, 527-530. https://doi.org/10.1016/j.biortech.2013.01.099

Wang, X., Han, H., Liu, X., Gu, X., Chen, K., & Lu, D. (2012). Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. Journal of Nanoparticle Research, 6, 1-10. https://doi.org/10.1007/s11051-012-0841-5

Wang, X., Liu, X., Chen, J., Han, H., & Yuan, Z. (2014). Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon, 68, 798-806. https://doi.org/10.1016/j.carbon.2013.11.072

Wiche, O., Székely, B., Moschner, C., & Heilmeier, H. (2018). Germanium in the soil-plant system—a review. In Environmental Science and Pollution Research, 25, 31938-31956. https://doi.org/10.1007/s11356-018-3172-y

Wu, L., Fu, X., Liu, H., Li, J., & Song, Y. (2014). Comparative study of graphene nanosheet- and multiwall carbon nanotube-based electrochemical sensor for the sensitive detection of cadmium. Analytica Chimica Acta, 851, 843-848. https://doi.org/10.1016/j.aca.2014.08.021

Wu, Q., Feng, C., Zhao, G., Wang, C., & Wang, Z. (2012). Graphene-coated fiber for solid-phase microextraction of triazine herbicides in water samples. Journal of Separation Science, 35(2), 193–199. https://doi.org/10.1002/jssc.201100740

You, Y., Jin, X. H., Wen, X. Y., Sahajwalla, V., Chen, V., Bustamante, H., & Joshi, R. K. (2018). Application of graphene oxide membranes for removal of natural organic matter from water. Carbon, 129(1), 415-419. https://doi.org/10.1016/j.carbon.2017.12.032

Zaytseva, O., & Neumann, G. (2016). Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture, 3(1), 1–26. https://doi.org/10.1186/s40538-016-0070-8

Zhang, M., Gao, B., Chen, J., & Li, Y. (2015). Effects of graphene on seed germination and seedling growth. Journal of Nanoparticle Research, 8(8387), 1-14. https://doi.org/10.1007/s11051-015-2885-9

Zhang, M., Gao, B., Chen, J., Li, Y., Creamer, A. E., & Chen, H. (2014). Slow-release fertilizer encapsulated by graphene oxide films. Chemical Engineering Journal, 255(1), 107-113. https://doi.org/10.1016/j.cej.2014.06.023

Zhao, J., Wang, Z., White, J. C., & Xing, B. (2014). Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environmental Science and Technology, 48(17), 9995-10009. https://doi.org/10.1021/es5022679

Zhou, K., Zhu, Y., Yang, X., Jiang, X., & Li, C. (2011). Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New Journal of Chemistry, 35(2), 353-359. https://doi.org/10.1039/c0nj00623h

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22, 3906-3924. https://doi.org/10.1002/adma.201001068

Downloads

Published

28/02/2021

How to Cite

MAY, A.; COELHO, L. F.; SILVA, E. H. F. M. da; VIANA, R. da S. .; VIEIRA JUNIOR, N. A. .; FERREIRA, W. P. M. Graphene: A new technology for agriculture. Research, Society and Development, [S. l.], v. 10, n. 2, p. e56610212827, 2021. DOI: 10.33448/rsd-v10i2.12827. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12827. Acesso em: 14 nov. 2024.

Issue

Section

Review Article