Graphene: A new technology for agriculture
DOI:
https://doi.org/10.33448/rsd-v10i2.12827Keywords:
Graphene; Graphene oxide; Agriculture; Nanomaterials; Carbon.Abstract
This article presents a review on the use of graphene in various segments, elucidating that this product can be used in various industrial sectors. These include mainly agriculture (as in large crops of high relevance, such as coffee), the food industry and the environment, as a plant growth stimulator and in fertilizers, nanoencapsulation and smart-release systems, antifungal and antibacterial agents, smart packaging, water treatment and ultrafiltration, contaminant removal, pesticide and insecticide quantitation, detection systems and precision agriculture. However, some challenges can be overcome before the graphene-based nanoparticle is used on a large scale. In this way, before using the product in the environment, it is necessary to determine whether the technology is safe for the soil-plant system and consumers. Furthermore, the cost of its use can also be a limiting factor depending on the level applied. Therefore, this review proposes to examine the diverse literature to explain the effects of the use of graphene in agriculture, plants and soil microorganisms. Accordingly, this article discusses and presents the possibilities of application of graphene in agriculture, plants and soil microorganisms.
References
Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731-5436. https://doi.org/10.1021/nn101390x
Andelkovic, I. B., Kabiri, S., Tavakkoli, E., Kirby, J. K., McLaughlin, M. J., & Losic, D. (2018). Graphene oxide-Fe(III) composite containing phosphate – A novel slow release fertilizer for improved agriculture management. Journal of Cleaner Production, 185(Iii), 97–104. https://doi.org/10.1016/j.jclepro.2018.03.050
Anjum, N. A., Singh, N., Singh, M. K., Sayeed, I., Duarte, A. C., Pereira, E., & Ahmad, I. (2014). Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Science of the Total Environment, 472, 834-841. https://doi.org/10.1016/j.scitotenv.2013.11.018
Anjum, N. A., Singh, N., Singh, M. K., Shah, Z. A., Duarte, A. C., Pereira, E., & Ahmad, I. (2013). Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). Journal of Nanoparticle Research, 15(7), 1-12. https://doi.org/10.1007/s11051-013-1770-7
Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902-907. https://doi.org/10.1021/nl0731872
Begum, P., Ikhtiari, R., & Fugetsu, B. (2011). Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon, 49(12), 3907-3919. https://doi.org/10.1016/j.carbon.2011.05.029
Brownson, D. A. C., Kampouris, D. K., & Banks, C. E. (2012). Graphene electrochemistry: Fundamental concepts through to prominent applications. In Chemical Society Review, 41(21), 6944-6976. https://doi.org/10.1039/c2cs35105f
Cai, X., Tan, S., Yu, A., Zhang, J., Liu, J., Mai, W., & Jiang, Z. (2012). Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity. Chemistry - An Asian Journal, 7(7), 1664-1670. https://doi.org/10.1002/asia.201200045
Chakravarty, D., Erande, M. B., & Late, D. J. (2015). Graphene quantum dots as enhanced plant growth regulators: Effects on coriander and garlic plants. Journal of the Science of Food and Agriculture, 95(13), 2772–2778. https://doi.org/10.1002/jsfa.7106
Chen, J., Peng, H., Wang, X., Shao, F., Yuan, Z., & Han, H. (2014). Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 6(3), 1879-1889. https://doi.org/10.1039/c3nr04941h
Chen, J., Sun, L., Cheng, Y., Lu, Z., Shao, K., Li, T., Hu, C., & Han, H. (2016). Graphene Oxide-Silver Nanocomposite: Novel Agricultural Antifungal Agent against Fusarium graminearum for Crop Disease Prevention. ACS Applied Materials and Interfaces, 8(36), 24057-24070. https://doi.org/10.1021/acsami.6b05730
Chen, M., Qin, X., & Zeng, G. (2017). Biodegradation of Carbon Nanotubes, Graphene, and Their Derivatives. In Trends in Biotechnology, 35(9), 836-846. https://doi.org/10.1016/j.tibtech.2016.12.001
Cheng, F., Liu, Y. F., Lu, G. Y., Zhang, X. K., Xie, L. L., Yuan, C. F., & Xu, B. B. (2016). Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. Journal of Plant Physiology, 193, 57-63. https://doi.org/10.1016/j.jplph.2016.02.011
Choi, J. T., Kim, D. H., Ryu, K. S., Lee, H. Il, Jeong, H. M., Shin, C. M., Kim, J. H., & Kim, B. K. (2011). Functionalized graphene sheet/polyurethane nanocomposites: Effect of particle size on physical properties. Macromolecular Research, 19(8), 809-814. https://doi.org/10.1007/s13233-011-0801-4
Ćirić, L., Sienkiewicz, A., Djokić, D. M., Smajda, R., Magrez, A., Kaspar, T., Nesper, R., & Forró, L. (2010). Size dependence of the magnetic response of graphite oxide and graphene flakes - an electron spin resonance study. Physica Status Solidi (B) Basic Research, 247(11-12), 2958-2961. https://doi.org/10.1002/pssb.201000448
Combarros, R. G., Collado, S., & Díaz, M. (2016). Toxicity of graphene oxide on growth and metabolism of Pseudomonas putida. Journal of Hazardous Materials, 310, 246-252. https://doi.org/10.1016/j.jhazmat.2016.02.038
Das, M. R., Sarma, R. K., Borah, S. C., Kumari, R., Saikia, R., Deshmukh, A. B., Shelke, M. V., Sengupta, P., Szunerits, S., & Boukherroub, R. (2013). The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloids and Surfaces B: Biointerfaces, 105, 128-136. https://doi.org/10.1016/j.colsurfb.2012.12.033
Du, S., Zhang, P., Zhang, R., Lu, Q., Liu, L., Bao, X., & Liu, H. (2016). Reduced graphene oxide induces cytotoxicity and inhibits photosynthetic performance of the green alga Scenedesmus obliquus. Chemosphere, 164, 499-507. https://doi.org/10.1016/j.chemosphere.2016.08.138
Faria, A. F., Martinez, D. S. T., Meira, S. M. M., de Moraes, A. C. M., Brandelli, A., Filho, A. G. S., & Alves, O. L. (2014). Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids and Surfaces B: Biointerfaces, 113, 115-124. https://doi.org/10.1016/j.colsurfb.2013.08.006
Forstner, C., Orton, T. G., Wang, P., Kopittke, P. M., & Dennis, P. G. (2019). Effects of carbon nanotubes and derivatives of graphene oxide on soil bacterial diversity. Science of the Total Environment, 682, 356-363. https://doi.org/10.1016/j.scitotenv.2019.05.162
Geng, H., Dai, J., Li, J., Di, Z., & Liu, X. (2016). Antibacterial ability and hemocompatibility of graphene functionalized germanium. Scientific Reports, 6(37474), 1-9. https://doi.org/10.1038/srep37474
Goodman, C. M., McCusker, C. D., Yilmaz, T., & Rotello, V. M. (2004). Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chemistry, 15(4), 897-900. https://doi.org/10.1021/bc049951i
Gurunathan, S. (2015). Cytotoxicity of graphene oxide nanoparticles on plant growth promoting rhizobacteria. Journal of Industrial and Engineering Chemistry, 32, 282-291. https://doi.org/10.1016/j.jiec.2015.08.027
Gurunathan, S., Han, J. W., Abdal Dayem, A., Eppakayala, V., & Kim, J. H. (2012). Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. International Journal of Nanomedicine, 7, 5901-5914. https://doi.org/10.2147/IJN.S37397
Homaeigohar, S., & Elbahri, M. (2017). Graphene membranes for water desalination. NPG Asia Materials, 9, 1-16. https://doi.org/10.1038/am.2017.135
Hou, M., Zang, X., Wang, C., & Wang, Z. (2013). The use of silica-coated magnetic graphene microspheres as the adsorbent for the extraction of pyrethroid pesticides from orange and lettuce samples followed by GC-MS analysis. Journal of Separation Science, 36(19), 3242-3248. https://doi.org/10.1002/jssc.201300656
Hu, X., Kang, J., Lu, K., Zhou, R., Mu, L., & Zhou, Q. (2014). Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Scientific Reports, 4(6122), 1-10. https://doi.org/10.1038/srep06122
Hu, X., Lu, K., Mu, L., Kang, J., & Zhou, Q. (2014). Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon, 80, 665-676. https://doi.org/10.1016/j.carbon.2014.09.010
Hu, X., & Zhou, Q. (2013). Health and ecosystem risks of graphene. In Chemical Reviews, 113(5), 3815-3835. https://doi.org/10.1021/cr300045n
Hu, X., & Zhou, Q. (2014). Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Scientific Reports, 10(1038), 1-9. https://doi.org/10.1038/srep03782
Hui, L., Piao, J. G., Auletta, J., Hu, K., Zhu, Y., Meyer, T., Liu, H., & Yang, L. (2014). Availability of the basal planes of graphene oxide determines whether it is antibacterial. ACS Applied Materials and Interfaces, 6(15), 13183-13190. https://doi.org/10.1021/am503070z
Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339. https://doi.org/10.1021/ja01539a017
Jain, R., & Mishra, S. (2016). Electrical and electrochemical properties of graphene modulated through surface functionalization. RSC Advances, 6(33), 27404–27415. https://doi.org/10.1039/c5ra26533a
Kabiri, S., Degryse, F., Tran, D. N. H., Da Silva, R. C., McLaughlin, M. J., & Losic, D. (2017). Graphene Oxide: A New Carrier for Slow Release of Plant Micronutrients. ACS Applied Materials and Interfaces, 9(49), 43325–43335. https://doi.org/10.1021/acsami.7b07890
Kim, M. J., Kim, W., & Chung, H. (2020). Effects of silver-graphene oxide on seed germination and early growth of crop species. PeerJ., 2020(1), 1-14. https://doi.org/10.7717/peerj.8387
Kurapati, R., Russier, J., Squillaci, M. A., Treossi, E., Ménard-Moyon, C., Del Rio-Castillo, A. E., Vazquez, E., Samorì, P., Palermo, V., & Bianco, A. (2015). Dispersibility-Dependent Biodegradation of Graphene Oxide by Myeloperoxidase. Small, 11(32), 3985-3994. https://doi.org/10.1002/smll.201500038
Lee, D. Y., Khatun, Z., Lee, J. H., Lee, Y. K., & In, I. (2011). Blood compatible graphene/heparin conjugate through noncovalent chemistry. Biomacromolecules, 12(2), 336-341. https://doi.org/10.1021/bm101031a
Lehner, B. A. E., Janssen, V. A. E. C., Spiesz, E. M., Benz, D., Brouns, S. J. J., Meyer, A. S., & van der Zant, H. S. J. (2019). Creation of Conductive Graphene Materials by Bacterial Reduction Using Shewanella Oneidensis. ChemistryOpen, 8(7), 888-895. https://doi.org/10.1002/open.201900186
Liang, Y., Yang, D., & Cui, J. (2017). A graphene oxide/silver nanoparticle composite as a novel agricultural antibacterial agent against Xanthomonas oryzae pv. oryzae for crop disease management. New Journal of Chemistry, 41, 13692-13699. https://doi.org/10.1039/c7nj02942j
Liu, Shangjie, Wei, H., Li, Z., Li, S., Yan, H., He, Y., & Tian, Z. (2015). Effects of graphene on germination and seedling morphology in rice. Journal of Nanoscience and Nanotechnology, 15(4), 2695-2701. https://doi.org/10.1166/jnn.2015.9254
Liu, Shaobin, Hu, M., Zeng, T. H., Wu, R., Jiang, R., Wei, J., Wang, L., Kong, J., & Chen, Y. (2012). Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir, 28(33), 12364-12372. https://doi.org/10.1021/la3023908
Liu, Shaobin, Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., Kong, J., & Chen, Y. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 5(9), 6971-6980. https://doi.org/10.1021/nn202451x
Lu, T., Xia, T., Qi, Y., Zhang, C., & Chen, W. (2017). Effects of clay minerals on transport of graphene oxide in saturated porous media. Environmental Toxicology and Chemistry, 36(3), 655-660. https://doi.org/10.1002/etc.3605
Luo, J., Cote, L. J., Tung, V. C., Tan, A. T. L., Goins, P. E., Wu, J., & Huang, J. (2010). Graphene oxide nanocolloids. Journal of the American Chemical Society, 50, 17667-17669. https://doi.org/10.1021/ja1078943
Ma, L., Zhu, Z., Su, M., Ma, L., Liu, D., & Wang, Z. (2013). Preparation of graphene oxide-silver nanoparticle nanohybrids with highly antibacterial capability. Talanta, 117, 449-455. https://doi.org/10.1016/j.talanta.2013.09.017
Mangadlao, J. D., Santos, C. M., Felipe, M. J. L., De Leon, A. C. C., Rodrigues, D. F., & Advincula, R. C. (2015). On the antibacterial mechanism of graphene oxide (GO) Langmuir-Blodgett films. Chemical Communications, 51, 2886-2889. https://doi.org/10.1039/c4cc07836e
Mejías Carpio, I. E., Santos, C. M., Wei, X., & Rodrigues, D. F. (2012). Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale, 12, 4746-4756. https://doi.org/10.1039/c2nr30774j
Möhler, J. S., Sim, W., Blaskovich, M. A. T., Cooper, M. A., & Ziora, Z. M. (2018). Silver bullets: A new lustre on an old antimicrobial agent. In Biotechnology Advances, 36(5), 1391-1411. https://doi.org/10.1016/j.biotechadv.2018.05.004
Nair, R., Mohamed, M. S., Gao, W., Maekawa, T., Yoshida, Y., Ajayan, P. M., & Kumar, D. S. (2012). Effect of carbon nanomaterials on the germination and growth of rice plants. Journal of Nanoscience and Nanotechnology, 12(3), 2212-2220. https://doi.org/10.1166/jnn.2012.5775
Nika, D. L., Askerov, A. S., & Balandin, A. A. (2012). Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Letters, 12(6), 3238-3244. https://doi.org/10.1021/nl301230g
Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451-10453. https://doi.org/10.1073/pnas.0502848102
Ocsoy, I., Paret, M. L., Ocsoy, M. A., Kunwar, S., Chen, T., You, M., & Tan, W. (2013). Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano, 7(10), 8972-8980. https://doi.org/10.1021/nn4034794
Park, S., Choi, K. S., Kim, S., Gwon, Y., & Kim, J. (2020). Graphene Oxide-Assisted Promotion of Plant Growth and Stability. 10(758), 1–11. https://doi.org/10.3390/nano10040758
Perreault, F., Faria, A. F., Nejati, S., & Elimelech, M. (2015). Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. ACS Nano, 9(7), 7226-7236. https://doi.org/10.1021/acsnano.5b02067
Prasad, K., Lekshmi, G. S., Ostrikov, K., Lussini, V., Blinco, J., Mohandas, M., Vasilev, K., Bottle, S., Bazaka, K., & Ostrikov, K. (2017). Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Scientific Reports, 7(1591), 1-11. https://doi.org/10.1038/s41598-017-01669-5
Ren, W., Chang, H., & Teng, Y. (2016). Sulfonated graphene-induced hormesis is mediated through oxidative stress in the roots of maize seedlings. Science of the Total Environment, 1(572), 926-934. https://doi.org/10.1016/j.scitotenv.2016.07.214
Ren, W., Ren, G., Teng, Y., Li, Z., & Li, L. (2015). Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community. Journal of Hazardous Materials, 297, 286-294. https://doi.org/10.1016/j.jhazmat.2015.05.017
Sawangphruk, M., Srimuk, P., Chiochan, P., Sangsri, T., & Siwayaprahm, P. (2012). Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon, 50(14), 5156–5161. https://doi.org/10.1016/j.carbon.2012.06.056
Seo, J. W. T., Green, A. A., Antaris, A. L., & Hersam, M. C. (2011). High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers. Journal of Physical Chemistry Letters, 2(9), 1004-1008. https://doi.org/10.1021/jz2003556
Shao, W., Liu, X., Min, H., Dong, G., Feng, Q., & Zuo, S. (2015). Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Applied Materials and Interfaces, 7(12), 6966-6973. https://doi.org/10.1021/acsami.5b00937
Shen, S., Liu, Y., Wang, F., Yao, G., Xie, L., & Xu, B. (2019). Graphene Oxide Regulates Root Development and Influences IAA Concentration in Rice. Journal of Plant Growth Regulation, 38, 241-248. https://doi.org/10.1007/s00344-018-9836-5
Soldano, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of graphene. In Carbon, 48, 2127-2150. https://doi.org/10.1016/j.carbon.2010.01.058
Somanathan, T., Prasad, K., Ostrikov, K. K., Saravanan, A., & Krishna, V. M. (2015). Graphene oxide synthesis from agro waste. Nanomaterials, 5(2), 826-834. https://doi.org/10.3390/nano5020826
Song, B., Tang, J., Zhen, M., & Liu, X. (2019). Influence of graphene oxide and biochar on anaerobic degradation of petroleum hydrocarbons. Journal of Bioscience and Bioengineering, 128(1), 72-79. https://doi.org/10.1016/j.jbiosc.2019.01.006
Song, J., Duan, C., Sang, Y., Wu, S., Ru, J., & Cui, X. (2018). Effects of graphene on bacterial community diversity and soil environments of Haplic Cambisols in Northeast China. Forests, 9(677) 1-18. https://doi.org/10.3390/f9110677
Sundramoorthy, A. K., Vignesh Kumar, T. H., & Gunasekaran, S. (2018). Graphene-Based Nanosensors and Smart Food Packaging Systems for Food Safety and Quality Monitoring. In Graphene Bioelectronics, 2018, 267-306. https://doi.org/10.1016/B978-0-12-813349-1.00012-3
Surwade, S. P., Smirnov, S. N., Vlassiouk, I. V., Unocic, R. R., Veith, G. M., Dai, S., & Mahurin, S. M. (2015). Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 10(5), 459-464. https://doi.org/10.1038/nnano.2015.37
Tang, J., Chen, Q., Xu, L., Zhang, S., Feng, L., Cheng, L., Xu, H., Liu, Z., & Peng, R. (2013). Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Applied Materials and Interfaces, 5(9), 3867-3874. https://doi.org/10.1021/am4005495
Wang, D., Wang, G., Zhang, G., Xu, X., & Yang, F. (2013). Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal. Bioresource Technology, 131, 527-530. https://doi.org/10.1016/j.biortech.2013.01.099
Wang, X., Han, H., Liu, X., Gu, X., Chen, K., & Lu, D. (2012). Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. Journal of Nanoparticle Research, 6, 1-10. https://doi.org/10.1007/s11051-012-0841-5
Wang, X., Liu, X., Chen, J., Han, H., & Yuan, Z. (2014). Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon, 68, 798-806. https://doi.org/10.1016/j.carbon.2013.11.072
Wiche, O., Székely, B., Moschner, C., & Heilmeier, H. (2018). Germanium in the soil-plant system—a review. In Environmental Science and Pollution Research, 25, 31938-31956. https://doi.org/10.1007/s11356-018-3172-y
Wu, L., Fu, X., Liu, H., Li, J., & Song, Y. (2014). Comparative study of graphene nanosheet- and multiwall carbon nanotube-based electrochemical sensor for the sensitive detection of cadmium. Analytica Chimica Acta, 851, 843-848. https://doi.org/10.1016/j.aca.2014.08.021
Wu, Q., Feng, C., Zhao, G., Wang, C., & Wang, Z. (2012). Graphene-coated fiber for solid-phase microextraction of triazine herbicides in water samples. Journal of Separation Science, 35(2), 193–199. https://doi.org/10.1002/jssc.201100740
You, Y., Jin, X. H., Wen, X. Y., Sahajwalla, V., Chen, V., Bustamante, H., & Joshi, R. K. (2018). Application of graphene oxide membranes for removal of natural organic matter from water. Carbon, 129(1), 415-419. https://doi.org/10.1016/j.carbon.2017.12.032
Zaytseva, O., & Neumann, G. (2016). Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture, 3(1), 1–26. https://doi.org/10.1186/s40538-016-0070-8
Zhang, M., Gao, B., Chen, J., & Li, Y. (2015). Effects of graphene on seed germination and seedling growth. Journal of Nanoparticle Research, 8(8387), 1-14. https://doi.org/10.1007/s11051-015-2885-9
Zhang, M., Gao, B., Chen, J., Li, Y., Creamer, A. E., & Chen, H. (2014). Slow-release fertilizer encapsulated by graphene oxide films. Chemical Engineering Journal, 255(1), 107-113. https://doi.org/10.1016/j.cej.2014.06.023
Zhao, J., Wang, Z., White, J. C., & Xing, B. (2014). Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environmental Science and Technology, 48(17), 9995-10009. https://doi.org/10.1021/es5022679
Zhou, K., Zhu, Y., Yang, X., Jiang, X., & Li, C. (2011). Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New Journal of Chemistry, 35(2), 353-359. https://doi.org/10.1039/c0nj00623h
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22, 3906-3924. https://doi.org/10.1002/adma.201001068
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 André May; Luciana Fontes Coelho; Evandro Henrique Figueiredo Moura da Silva; Ronaldo da Silva Viana; Nilson Aparecido Vieira Junior; Williams Pinto Marques Ferreira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.