Development of CuO-based oxygen carriers supported on diatomite and kaolin for chemical looping combustion

Authors

DOI:

https://doi.org/10.33448/rsd-v10i4.12831

Keywords:

CO2 capture; Chemical Looping Combustion; Oxygen Carriers; Copper; Diatomite; Kaolin.

Abstract

Chemical Looping Combustion (CLC) technology has emerged as a promising alternative capable of restricting the effects of global warming due to anthropogenic gas emissions, especially CO2, through its inherent capture. This study aims to synthesize and evaluate Cu-based oxygen carriers supported on natural materials such as diatomite and kaolin, through the incipient wet impregnation method for CLC process applications. Oxygen carriers were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and scanning electron microscopy with surface energy dispersive x-ray spectroscopy (SEM-EDS). The mechanical strength of the two oxygen carrier particles was determined after the sintering procedure resulting in high crushing force. Reactivity of oxygen carriers was evaluated in a thermobalance with CH4 and H2 gases. Different reaction pathways were attempted when undergoing the redox cycles: total direct reduction of CuO to Cu0 for Cu-K and partial reduction of CuO to Cu2O and CuO to Cu-D. However, the highest reactivity and reaction rate was achieved in Cu-D due to the pore structure of diatomite, the chemical composition and the resulting interaction between CuO and the support. H2 gas reactivity tests showed a higher conversion rate and greater stability between cycles for both oxygen carriers. Thus, the reducible CuO content present in Cu-Diatomite during the reactivity test with H2 as the fuel gas was ideal for achieving high solids conversion, tendency for greater stability and a higher reaction rate.

References

Abad, A., Cuadrat, A., Mendiara, T., García-Labiano, F., Gayán, P., De Diego, L. F., & Adánez, J. (2012). Low-cost Fe-based oxygen carrier materials for the iG-CLC process with coal. 2. Industrial and Engineering Chemistry Research, 51(50), 16230–16241. https://doi.org/10.1021/ie302158q.

Adánez-Rubio, I., Arjmand, M., Leion, H., Gayán, P., Abad, A., Mattisson, T., & Lyngfelt, A. (2013). Investigation of combined supports for cu-based oxygen carriers for chemical-looping with oxygen uncoupling (CLOU). Energy and Fuels, 27(7), 3918–3927. https://doi.org/10.1021/ef401161s.

Adánez-Rubio, I., Gayán, P., García-Labiano, F., de Diego, L. F., Adánez, J., & Abad, A. (2011). Development of CuO-based oxygen-carrier materials suitable for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Energy Procedia, 4, 417–424. https://doi.org/10.1016/J.EGYPRO.2011.01.070.

Adánez-Rubio, I., Izquierdo, M. T., Abad, A., Gayán, P., de Diego, L. F., & Adánez, J. (2017). Spray granulated Cu-Mn oxygen carrier for chemical looping with oxygen uncoupling (CLOU) process. International Journal of Greenhouse Gas Control, 65, 76–85. https://doi.org/10.1016/J.IJGGC.2017.08.021.

Adánez-Rubio, I., Pérez-Astray, A., Mendiara, T., Izquierdo, M. T., Abad, A., Gayán, P., … Adánez, J. (2018). Chemical looping combustion of biomass: CLOU experiments with a Cu-Mn mixed oxide. Fuel Processing Technology, 172(January), 179–186. https://doi.org/10.1016/j.fuproc.2017.12.010.

Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., & De Diego, L. F. (2012). Progress in chemical-looping combustion and reforming technologies. Progress in Energy and Combustion Science, 38(2), 215–282. https://doi.org/10.1016/j.pecs.2011.09.001.

Adánez, J., Abad, A., Mendiara, T., Gayán, P., de Diego, L. F., & García-Labiano, F. (2018). Chemical looping combustion of solid fuels. Progress in Energy and Combustion Science, Vol. 65, pp. 6–66. https://doi.org/10.1016/j.pecs.2017.07.005.

Adánez, J., De Diego, L. F., García-Labiano, F., Gayán, P., Abad, A., & Palacios, J. M. (2004). Selection of oxygen carriers for chemical-looping combustion. Energy and Fuels, 18(2), 371–377. https://doi.org/10.1021/ef0301452.

de Diego, L. F., Gayán, P., García-Labiano, F., Celaya, J., Abad, A., & Adánez, J. (2005). Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion: Avoiding fluidized bed agglomeration. Energy and Fuels, 19(5), 1850–1856. https://doi.org/10.1021/ef050052f.

De Freitas, V. A. A., Lima, J. S. V., & Da Couceiro, P. R. C. (2011). Caracterização e análise estrutural da hidroxisodalita sintetizada a partir de amostras de solo Amazônico. Ceramica, 57(343), 281–287.

Fernandes, T., Hacon, S. S., Novais, J. W. Z., Siguarezi, S. B., Silva, C. J., Alcântara, L. C. S., Curvo, A. D., Fernandes, T. (2019). Poluição do ar e efeitos na saúde de crianças na Amazônia paraense: uma análise bibliométrica. Pesquisa, Sociedade e Desenvolvimento, 8 (4), e4984907. http://dx.doi.org/10.33448/rsd-v8i4.907.

Forero, C. R., Gayán, P., de Diego, L. F., Abad, A., García-Labiano, F., & Adánez, J. (2009). Syngas combustion in a 500 Wth Chemical-Looping Combustion system using an impregnated Cu-based oxygen carrier. Fuel Processing Technology, 90(12), 1471–1479. https://doi.org/10.1016/j.fuproc.2009.07.001.

García-Labiano, F., de Diego, L. F., Adánez, J., Abad, A., & Gayán, P. (2004). Reduction and Oxidation Kinetics of a Copper-Based Oxygen Carrier Prepared by Impregnation for Chemical-Looping Combustion. Industrial & Engineering Chemistry Research. https://doi.org/10.1021/ie0493311.

Gayán, P., Adánez-Rubio, I., Abad, A., De Diego, L. F., García-Labiano, F., & Adánez, J. (2012). Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Fuel, 96, 226–238. https://doi.org/10.1016/j.fuel.2012.01.021.

Gomes, D. S., Barbosa, A. S., Santos, T. M., Santos, S. K., Sales Silva, J. H. C., Aquino, I. S. (2021). Cinética de liberação de CO2 e decomposição da fitomassa em sistemas de uso e manejo do solo. Pesquisa, Sociedade e Desenvolvimento, 10 (1). e9810111413. http://dx.doi.org/10.33448/rsd-v10i1.11413.

Johansson, M., Mattisson, T., & Lyngfelt, A. (2004). Investigation of FeO with MgAlO for Chemical-Looping Combustion Investigation of Fe2O3 with MgAl 2 O 4 for Chemical-Looping Combustion. 43(22), 6978–6987. https://doi.org/10.1021/ie049813c.

Liu, J., Zheng, C., Yue, J., & Xu, G. (2019). Synthesis, characterization and catalytic methanation performance of modified kaolin-supported Ni-based catalysts. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/J.CJCHE.2019.04.009.

Ma, J., Tian, X., Zhao, H., Bhattacharya, S., Rajendran, S., & Zheng, C. (2017). Investigation of Two Hematites as Oxygen Carrier and Two Low-Rank Coals as Fuel in Chemical Looping Combustion. Energy and Fuels, 31(2), 1896–1903. https://doi.org/10.1021/acs.energyfuels.6b02101.

Maia, A. Á. B., Dias, R. N., Angélica, R. S., & Neves, R. F. (2019). Influence of an aging step on the synthesis of zeolite NaA from Brazilian Amazon kaolin waste. Journal of Materials Research and Technology, 8(3), 2924–2929. https://doi.org/10.1016/j.jmrt.2019.02.021.

McGlashan, N., Shah, N., Caldecott, B., & Workman, M. (2012). High-level techno-economic assessment of negative emissions technologies. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2012.10.004.

Mebreka, A., & , Hadda Rezzaga, Sihem Benayachea, Afef Azzia, Yasmina Taïbib, Sabrina Ladjamaa, Naima Touatia, Azzedine Grida, S. B. (2019). Effect of chamotte on the structural and microstructural characteristics of mullite elaborated via reaction sintering of Algerian kaolin.

Mendiara, T., Pérez-Astray, A., Izquierdo, M. T., Abad, A., de Diego, L. F., García-Labiano, F., … Adánez, J. (2018). Chemical Looping Combustion of different types of biomass in a 0.5 kWth unit. Fuel, 211, 868–875. https://doi.org/10.1016/j.fuel.2017.09.113.

Oliveira, M M., Esteves, P. M. S. V., Baía, S. R. D., Dantas, N. S., Silva, V. F. (2020). Análise da produção científica internacional sobre mudanças climáticas e poluição do ar. Pesquisa, Sociedade e Desenvolvimento,9 (10), e1609108314. http://dx.doi.org/10.33448/rsd-v9i10.8314.

San Pio, M. A., Gallucci, F., Roghair, I., & van Sint Annaland, M. (2017). On the mechanism controlling the redox kinetics of Cu-based oxygen carriers. Chemical Engineering Research and Design, 124, 193–201. https://doi.org/10.1016/j.cherd.2017.06.019.

San Pio, M. A., Martini, M., Gallucci, F., Roghair, I., & van Sint Annaland, M. (2018). Kinetics of CuO/SiO2 and CuO/Al2O3 oxygen carriers for chemical looping combustion. Chemical Engineering Science, 175, 56–71. https://doi.org/10.1016/j.ces.2017.09.044.

San Pio, M. A., Roghair, I., Gallucci, F., & van Sint Annaland, M. (2016). Investigation on the decrease in the reduction rate of oxygen carriers for chemical looping combustion. Powder Technology, 301, 429–439. https://doi.org/10.1016/J.POWTEC.2016.06.031.

Santos, K. C. V, Gonçalves, W. P., Silva, V. J., Santana, L. N. L., & Lira, H. L. (2017). Formação de Mulita a Partir de Composições de Caulim e Alumina com Diferentes Tamanhos de Partículas. Revista Eletrônica de Materiais e Processos, 3(2016), 136–142.

Song, H., Shah, K., Doroodchi, E., Wall, T., & Moghtaderi, B. (2014). Reactivity of Al2O3- or SiO2-Supported Cu-, Mn-, and Co-based oxygen carriers for chemical looping air separation. Energy and Fuels, 28(2), 1284–1294. https://doi.org/10.1021/ef402268t.

Takht, M., & Saeed, R. (2014). Carbon dioxide capture and utilization in petrochemical industry : potentials and challenges. (27), 63–77. https://doi.org/10.1007/s13203-014-0050-5.

Van Garderen, Noémie, Clemens, F. J., Kaufmann, J., Urbanek, M., Binkowski, M., Graule, T., & Aneziris, C. G. (2012). Pore analyses of highly porous diatomite and clay based materials for fluidized bed reactors. Microporous and Mesoporous Materials, 151, 255–263. https://doi.org/10.1016/J.MICROMESO.2011.10.028.

Van Garderen, Noemie, Otal, E. H., Aneziris, C. G., Graule, T., & Clemens, F. J. (2014). Influence of porous substrate on copper based oxygen carrier efficiency for chemical-looping combustion. Microporous and Mesoporous Materials, 190, 362–370. https://doi.org/10.1016/j.micromeso.2014.02.017.

Wang, K., Yan, X., & Komarneni, S. (2018). CO 2 Adsorption by Several Types of Pillared Montmorillonite Clays. Applied Petrochemical Research, 8(3), 173–177. https://doi.org/10.1007/s13203-018-0206-9.

Wang, P., Means, N., Howard, B. H., Shekhawat, D., & Berry, D. (2018). The reactivity of CuO oxygen carrier and coal in Chemical-Looping with Oxygen Uncoupled (CLOU) and In-situ Gasification Chemical-Looping Combustion (iG-CLC). Fuel, 217(January), 642–649. https://doi.org/10.1016/j.fuel.2017.12.102.

Wang, X., Xu, T., Jin, X., Hu, Z., Liu, S., Xiao, B., … Hu, M. (2017). CuO supported on olivine as an oxygen carrier in chemical looping processes with pine sawdust used as fuel. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2017.07.175.

Zhang, L., Li, K., Gu, Z., Zhu, X., Wei, Y., Li, L., … Wang, H. (2019). Iron-rich copper ore as a promising oxygen carrier for chemical looping combustion of methane. Journal of the Taiwan Institute of Chemical Engineers, 101, 204–213. https://doi.org/10.1016/j.jtice.2019.04.053.

Downloads

Published

03/04/2021

How to Cite

COSTA, R. C. P. da .; NASCIMENTO , R. A. B. do .; MELO, D. M. de A. .; ALBUQUERQUE, D. S. .; MEDEIROS, R. L. B. de A. .; MELO, M. A. de F. .; ADÁNEZ, J. Development of CuO-based oxygen carriers supported on diatomite and kaolin for chemical looping combustion. Research, Society and Development, [S. l.], v. 10, n. 4, p. e15110412831, 2021. DOI: 10.33448/rsd-v10i4.12831. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12831. Acesso em: 7 jan. 2025.

Issue

Section

Engineerings