Vulnerability of semiarid regions to climate change: impacts on the production of photovoltaic energy
DOI:
https://doi.org/10.33448/rsd-v10i3.12931Keywords:
Climate change; Climate trends; Semiarid; Solar photovoltaic energy.Abstract
It has already been demonstrated that climate change can alter the production of renewable energy, being a necessary evaluation regarding the installation of new energy plants. The change in climatic parameters such as maximum and mean temperatures, and cloudiness, can further penalize the semiarid region from social and economic perspectives. Considering this scenario, the projections of climatic parameters can produce approximations of the evolution of their behavior, enabling the delineation of prognostics on the performance of renewable energy production. This study carries out a systematic literature review to verify how climate trends can affect the production of photovoltaic solar energy in semiarid regions. It is concluded that, despite the lack of studies on the subject, the results of scientific and technological research can contribute to minimize the difficult situation of the population living in these regions, providing an improvement in life quality even in adverse climatic situations. The necessity of considering climate trends is highlighted as a prior step to the implementation and optimization of future renewable energy developments on semiarid regions.
References
Abrahão, R., Peixoto, I. M. B. M., Silva, L. P., & Medeiros, S. E. L. (2017). Mais calor para o Sertão? Perspectivas de tendências no índice de calor do Sertão Paraibano. In Congresso Brasileiro de Agrometeorologia (Vol. 20).
Alcântara, L. R. P., da Silva, M. E. R., dos Santos Neto, S. M., Lafayette, F. B., Coutinho, A. P., Montenegro, S. M. G. L., & Antonino, A. C. D. (2020). Mudanças climáticas e tendências do regime pluviométrico do Recife. Research, Society and Development, 9(3), e178932583-e178932583.
Andrade, A.R., Melo, V.F.M.B., Lucena, D.B., Abrahao, R. (2021) Wind speed trends and the potential of electricity generation at new wind power plants in Northeast Brazil. Journal of the Brazilian Society of Mechanical Sciences and Engineering.
Barboza, E. N., da Rocha Lima, B. M., de Alencar, F. H. H., & da Silva Alencar, G. S. (2020). Análise temporal do regime pluviométrico na cidade de Iguatu-Ceará. Research, Society and Development, 9(7), e66973750-e66973750.
Bazyomo, S. D. Y. B., Agnidé Lawin, E., Coulibaly, O., & Ouedraogo, A. (2016). Forecasted changes in West Africa photovoltaic energy output by 2045. Climate, 4(4), 53.
Busson, B. O., Dias, P. H. F., Dupont, I. M., Campos, P. H. M., Carvalho, P. C., & Barroso, E. A. Q. (2019). Validação de modelos de comportamento térmico de painéis fotovoltaicos para o Semiárido brasileiro. In: Abdala, P. J. P. (Org.). Energia Solar E Eólica. 10.22533/at.ed.6671922012 Ponta Grossa (PR): Atena Editora, 2019. – (Energia Solar e Eólica, v. 1).
Carvalho, M., & Delgado, D. (2017). Potential of photovoltaic solar energy to reduce the carbon footprint of the Brazilian electricity matrix. LALCA: Revista Latino-Americana em Avaliação do Ciclo de Vida, 1(1), 64-85.
Carvalho, M., de Figueiredo, J. N., Cavalcanti, G. C. D. A., Freire, R. S., Machado, L., & Abrahão, R. (2021). Educação ambiental por meio de um app para quantificação de pegada de carbono. Research, Society and Development, 10(1), e0710111058-e0710111058.
Crook, J. A., Jones, L. A., Forster, P. M., & Crook, R. (2011). Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy & Environmental Science, 4(9), 3101-3109.
Fant, C., Schlosser, C. A., & Strzepek, K. (2015). The impact of climate change on wind and solar resources in southern Africa. Applied Energy, 161, 556-564.
Farias Neto, J. R., Silva Junior, J. M., Abrahão, R., Carvalho, M. (2018). Como repercutem as mudanças climáticas na produção de energias renováveis? In: Congresso Brasileiro de Gestão Ambiental e Sustentabilidade – Congestas, João Pessoa.
García-Garizábal, I., Abrahão, R., & Medeiros, S. E. L. (2020). Generación de series climáticas para caracterización termo-pluviométrica del semiárido brasileño (1981-2015. DYNA, 87(215), 254-262.
Hajjaj, C., Merrouni, A. A., Bouaichi, A., Benhmida, M., Sahnoun, S., Ghennioui, A., & Zitouni, H. (2018). Evaluation, comparison and experimental validation of different PV power prediction models under semi-arid climate. Energy Conversion and Management, 173, 476-488.
Holanda, R. M., & Medeiros, R. M. (2020). Comportamento térmico e a contribuição pluvial em Lagoa Seca, Brasil entre 1981-2019. Research, Society and Development, 9(7), e695974815-e695974815.
IPCC. (2007) The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Houghton, J. T. (Ed.). Climate Change. Cambridge University Press, 2007.
Jakhrani, A. Q., Othman, A. K., Rigit, A. R. H., & Samo, S. R. (2011). Determination and comparison of different photovoltaic module temperature models for Kuching, Sarawak. In 2011 IEEE Conference on Clean Energy and Technology (CET) (pp. 231-236). IEEE.
Jerez, S., Tobin, I., Vautard, R., Montávez, J. P., López-Romero, J. M., Thais, F., & Wild, M. (2015). The impact of climate change on photovoltaic power generation in Europe. Nature communications, 6(1), 1-8.
Martins, F. R., Pereira, E. B., Silva, S. A. B., Abreu, S. L., & Colle, S. (2008). Solar energy scenarios in Brazil, Part one: Resource assessment. Energy Policy, 36(8), 2853-2864.
Medeiros, S. E. L., Abrahão, R., da Silva, L. P., & de Medeiros Silva, W. K. (2019). Comparison between observed and estimated data to assess air temperature variability and trends in the Sertão Paraibano mesoregion (Brazil). Environmental monitoring and assessment, 191(2), 63.
Medeiros, S. E. L., Nilo, P. F., Silva, L. P., Santos, C. A. C., Carvalho, M., & Abrahão, R. (2021). Influence of climatic variability on the electricity generation potential by renewable sources in the Brazilian semi-arid region. Journal of Arid Environments, 184, 104331.
Obregon, G. O., Marengo, J. A. (2007). Caracterização do clima no século XX no Brasil: tendência de chuvas e temperaturas médias e extremas. Relatório nº 2 – Projeto: Mudanças Climáticas Globais e Efeitos sobre a Biodiversidade – subprojeto: Caracterização do clima atual e definição das alterações climáticas para o território brasileiro ao longo do século XX.
Oliveira, A. S., Pereira, G. A., Rodrigues, A. F., & Neto, J. D. O. M. (2018). Tendências em índices extremos de precipitação e temperatura do ar na cidade de Uberaba, MG. Sustentare, 2(1), 118-134.
Pinho, J. T., Galdino, M. A. (2014). Manual de Engenharia para Sistemas fotovoltaicos. Grupo de Energia solar - GTES - CEPEL - DTE – CRESESB.
Popovici, C. G., Hudişteanu, S. V., Mateescu, T. D., & Cherecheş, N. C. (2016). Efficiency improvement of photovoltaic panels by using air cooled heat sinks. Energy Procedia, 85, 425-432.
Schaeffer, R., Szklo, A. S., de Lucena, A. F. P., Borba, B. S. M. C., Nogueira, L. P. P., Fleming, F. P., & Boulahya, M. S. (2012). Energy sector vulnerability to climate change: A review. Energy, 38(1), 1-12.
Silva, F. D. F. N., Gomes, A. C. D. S., Lucio, P. S., Araújo, E. H. S., & Silva, C. M. S. (2015). Estudo de caso: temperatura média mensal de regiões do litoral e semiárido do nordeste brasileiro (nota de pesquisa). Revista Brasileira de Climatologia, 17(11).
Siqueira, C. D. (2011). Regime internacional de mudanças climáticas e segurança energética. Mediações-Revista de Ciências Sociais, 16(2), 210-227.
Skoplaki, E., & Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar energy, 83(5), 614-624.
Vale, D. C., Silva, R. S., Rocha, E. D. J. T., & de Alexandria, A. R. (2020). Zoning for exploration of wind energy in Ceará with the use of geographic information systems (GIS) and multicriteria analysis. Research, Society and Development, 9(7), e455973809-e455973809.
Velloso, M. F. A., Martins, F. R., & Pereira, E. B. (2019). Case study for hybrid power generation combining hydro-and photovoltaic energy resources in the Brazilian semiarid region. Clean Technologies and Environmental Policy, 21(5), 941-952.
Wild, M., Folini, D., Henschel, F., Fischer, N., & Müller, B. (2015). Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Solar Energy, 116, 12-24.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Luiz Felipe Souza Fonseca; José Moreira Silva Júnior; José Ribeiro Farias Neto; Raphael Abrahão; Monica Carvalho
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.