Vulnerabilidade das regiões semiáridas às mudanças climáticas: impactos na produção de energia fotovoltaica
DOI:
https://doi.org/10.33448/rsd-v10i3.12931Palavras-chave:
Mudanças climáticas; Tendências climáticas; Semiárido; Energia solar fotovoltaica.Resumo
Já está demonstrado que as mudanças climáticas alteram a capacidade de produção das energias renováveis, assim passando a ser uma avaliação necessária no que tange a instalação de novas usinas de energia desse tipo de fonte. A alteração de parâmetro climáticos como temperatura máxima, temperatura mínima, temperatura média e nebulosidade tendem a prejudicar a região semiárida social e economicamente. Haja vista esse cenário, lança-se mão de projeções de parâmetros climáticos, produzindo aproximações da evolução de seus comportamentos, possibilitando prognósticos sobre o desempenho da produção de energias renováveis. Fazendo uma revisão bibliográfica, o presente trabalho se dedica a verificar como as tendências climáticas impactam na produção de energia fotovoltaica em regiões semiáridas. Conclui-se que, apesar da escassez de trabalhos sobre o tema, os resultados de pesquisas científicas e tecnológicas pode contribuir para minimizar a difícil situação das populações que vivem nessas regiões, proporcionando melhoria na qualidade de vida mesmo em situações climáticas adversas. Sendo assim, fica clara a necessidade da consideração de tendências climáticas na implementação e otimização de futuras instalações de energias renováveis no semiárido.
Referências
Abrahão, R., Peixoto, I. M. B. M., Silva, L. P., & Medeiros, S. E. L. (2017). Mais calor para o Sertão? Perspectivas de tendências no índice de calor do Sertão Paraibano. In Congresso Brasileiro de Agrometeorologia (Vol. 20).
Alcântara, L. R. P., da Silva, M. E. R., dos Santos Neto, S. M., Lafayette, F. B., Coutinho, A. P., Montenegro, S. M. G. L., & Antonino, A. C. D. (2020). Mudanças climáticas e tendências do regime pluviométrico do Recife. Research, Society and Development, 9(3), e178932583-e178932583.
Andrade, A.R., Melo, V.F.M.B., Lucena, D.B., Abrahao, R. (2021) Wind speed trends and the potential of electricity generation at new wind power plants in Northeast Brazil. Journal of the Brazilian Society of Mechanical Sciences and Engineering.
Barboza, E. N., da Rocha Lima, B. M., de Alencar, F. H. H., & da Silva Alencar, G. S. (2020). Análise temporal do regime pluviométrico na cidade de Iguatu-Ceará. Research, Society and Development, 9(7), e66973750-e66973750.
Bazyomo, S. D. Y. B., Agnidé Lawin, E., Coulibaly, O., & Ouedraogo, A. (2016). Forecasted changes in West Africa photovoltaic energy output by 2045. Climate, 4(4), 53.
Busson, B. O., Dias, P. H. F., Dupont, I. M., Campos, P. H. M., Carvalho, P. C., & Barroso, E. A. Q. (2019). Validação de modelos de comportamento térmico de painéis fotovoltaicos para o Semiárido brasileiro. In: Abdala, P. J. P. (Org.). Energia Solar E Eólica. 10.22533/at.ed.6671922012 Ponta Grossa (PR): Atena Editora, 2019. – (Energia Solar e Eólica, v. 1).
Carvalho, M., & Delgado, D. (2017). Potential of photovoltaic solar energy to reduce the carbon footprint of the Brazilian electricity matrix. LALCA: Revista Latino-Americana em Avaliação do Ciclo de Vida, 1(1), 64-85.
Carvalho, M., de Figueiredo, J. N., Cavalcanti, G. C. D. A., Freire, R. S., Machado, L., & Abrahão, R. (2021). Educação ambiental por meio de um app para quantificação de pegada de carbono. Research, Society and Development, 10(1), e0710111058-e0710111058.
Crook, J. A., Jones, L. A., Forster, P. M., & Crook, R. (2011). Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy & Environmental Science, 4(9), 3101-3109.
Fant, C., Schlosser, C. A., & Strzepek, K. (2015). The impact of climate change on wind and solar resources in southern Africa. Applied Energy, 161, 556-564.
Farias Neto, J. R., Silva Junior, J. M., Abrahão, R., Carvalho, M. (2018). Como repercutem as mudanças climáticas na produção de energias renováveis? In: Congresso Brasileiro de Gestão Ambiental e Sustentabilidade – Congestas, João Pessoa.
García-Garizábal, I., Abrahão, R., & Medeiros, S. E. L. (2020). Generación de series climáticas para caracterización termo-pluviométrica del semiárido brasileño (1981-2015. DYNA, 87(215), 254-262.
Hajjaj, C., Merrouni, A. A., Bouaichi, A., Benhmida, M., Sahnoun, S., Ghennioui, A., & Zitouni, H. (2018). Evaluation, comparison and experimental validation of different PV power prediction models under semi-arid climate. Energy Conversion and Management, 173, 476-488.
Holanda, R. M., & Medeiros, R. M. (2020). Comportamento térmico e a contribuição pluvial em Lagoa Seca, Brasil entre 1981-2019. Research, Society and Development, 9(7), e695974815-e695974815.
IPCC. (2007) The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Houghton, J. T. (Ed.). Climate Change. Cambridge University Press, 2007.
Jakhrani, A. Q., Othman, A. K., Rigit, A. R. H., & Samo, S. R. (2011). Determination and comparison of different photovoltaic module temperature models for Kuching, Sarawak. In 2011 IEEE Conference on Clean Energy and Technology (CET) (pp. 231-236). IEEE.
Jerez, S., Tobin, I., Vautard, R., Montávez, J. P., López-Romero, J. M., Thais, F., & Wild, M. (2015). The impact of climate change on photovoltaic power generation in Europe. Nature communications, 6(1), 1-8.
Martins, F. R., Pereira, E. B., Silva, S. A. B., Abreu, S. L., & Colle, S. (2008). Solar energy scenarios in Brazil, Part one: Resource assessment. Energy Policy, 36(8), 2853-2864.
Medeiros, S. E. L., Abrahão, R., da Silva, L. P., & de Medeiros Silva, W. K. (2019). Comparison between observed and estimated data to assess air temperature variability and trends in the Sertão Paraibano mesoregion (Brazil). Environmental monitoring and assessment, 191(2), 63.
Medeiros, S. E. L., Nilo, P. F., Silva, L. P., Santos, C. A. C., Carvalho, M., & Abrahão, R. (2021). Influence of climatic variability on the electricity generation potential by renewable sources in the Brazilian semi-arid region. Journal of Arid Environments, 184, 104331.
Obregon, G. O., Marengo, J. A. (2007). Caracterização do clima no século XX no Brasil: tendência de chuvas e temperaturas médias e extremas. Relatório nº 2 – Projeto: Mudanças Climáticas Globais e Efeitos sobre a Biodiversidade – subprojeto: Caracterização do clima atual e definição das alterações climáticas para o território brasileiro ao longo do século XX.
Oliveira, A. S., Pereira, G. A., Rodrigues, A. F., & Neto, J. D. O. M. (2018). Tendências em índices extremos de precipitação e temperatura do ar na cidade de Uberaba, MG. Sustentare, 2(1), 118-134.
Pinho, J. T., Galdino, M. A. (2014). Manual de Engenharia para Sistemas fotovoltaicos. Grupo de Energia solar - GTES - CEPEL - DTE – CRESESB.
Popovici, C. G., Hudişteanu, S. V., Mateescu, T. D., & Cherecheş, N. C. (2016). Efficiency improvement of photovoltaic panels by using air cooled heat sinks. Energy Procedia, 85, 425-432.
Schaeffer, R., Szklo, A. S., de Lucena, A. F. P., Borba, B. S. M. C., Nogueira, L. P. P., Fleming, F. P., & Boulahya, M. S. (2012). Energy sector vulnerability to climate change: A review. Energy, 38(1), 1-12.
Silva, F. D. F. N., Gomes, A. C. D. S., Lucio, P. S., Araújo, E. H. S., & Silva, C. M. S. (2015). Estudo de caso: temperatura média mensal de regiões do litoral e semiárido do nordeste brasileiro (nota de pesquisa). Revista Brasileira de Climatologia, 17(11).
Siqueira, C. D. (2011). Regime internacional de mudanças climáticas e segurança energética. Mediações-Revista de Ciências Sociais, 16(2), 210-227.
Skoplaki, E., & Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar energy, 83(5), 614-624.
Vale, D. C., Silva, R. S., Rocha, E. D. J. T., & de Alexandria, A. R. (2020). Zoning for exploration of wind energy in Ceará with the use of geographic information systems (GIS) and multicriteria analysis. Research, Society and Development, 9(7), e455973809-e455973809.
Velloso, M. F. A., Martins, F. R., & Pereira, E. B. (2019). Case study for hybrid power generation combining hydro-and photovoltaic energy resources in the Brazilian semiarid region. Clean Technologies and Environmental Policy, 21(5), 941-952.
Wild, M., Folini, D., Henschel, F., Fischer, N., & Müller, B. (2015). Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Solar Energy, 116, 12-24.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Luiz Felipe Souza Fonseca; José Moreira Silva Júnior; José Ribeiro Farias Neto; Raphael Abrahão; Monica Carvalho
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.