Thermo-hydraulic performance of nanofluids composed of functionalized multiple-walled carbon nanotubes (MWCNT-OH/water)

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13031

Keywords:

Nanotechnology; Nanotubes; Thermo-hydraulic performance; Nanoparticles.

Abstract

In order to evaluate the potential of a new fluid capable of improving the efficiency of thermal exchange processes in refrigeration systems, the present work proposed the study of the thermo-hydraulic performance of nanofluids constituted by nanoparticles of carbon nanotubes of the type MWCNT dispersed in distilled water. Nanoparticles with -OH functionalization degree, 3%, 6% and 9% were used to produce nine samples of nanofluids. The “two-step” method, with the help of sonication and high-pressure homogenization, was used to disperse the nanoparticles in the base fluid. To evaluate the thermo-hydraulic performance, the following steps were performed: production of the nanofluids by the two-step method. The use of the experimental bench allowed to obtain the necessary parameters for the determination of the heat transfer coefficient by convection and thermohydraulic performance.

References

Cárdenas Gómez, A. O., Paz Alegrias, J. G., & Bandarra Filho, E. P. (2017). Experimental analysis of the thermal-hydraulic performance of water based silver and SWCNT nanofluids in single-phase flow. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2017.06.090.

Choi, S. U. S. E Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. In International Mechanical Engineering Congress and Exhibition. San Francisco,CA.

Chupin, A., Hu, L. W., & Buongiorno, J. (2008). Proceedings of the 2008 International Congress on Advances in Nuclear Power Plants: ICAPP ’08: embedded topical meeting, June 8-12, 2008, Anaheim, California. California.: American Nuclear Society.

Gómez, A. O. C. (2019). Avaliação experimental da transferência de calor e perda de pressão de nanofluidos em escoamento monofásico em dutos. Tese.

Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2015). Fundamentos de Transferencia de Calor e de Massa. LTC- Livros Técnicos e Científicos Ltda (7th ed.). LTC. https://doi.org/10.1016/j.applthermaleng.2011.03.022.

Kazi, S. N., Duffy, G. G., & Chen, X. D. (2014). Validation of heat transfer and friction loss data for fibre suspensions in a circular and a coaxial pipe heat exchanger. International Journal of Thermal Sciences. https://doi.org/10.1016/j.ijthermalsci.2014.01.001.

Meyer, J. P. P., Mckrell, T. J. J., & Grote, K. (2013). The influence of multi-walled carbon nanotubes on single- phase heat transfer and pressure drop characteristics in the transitional flow regime of smooth tubes. International Journal of Heat and Mass Transfer, 58(1–2), 597–609. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.074.

O’Hanley, H., Buongiorno, J., McKrell, T., & Hu, L. W. (2012). Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry. Advances in Mechanical Engineering. https://doi.org/10.1155/2012/181079.

Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11(2), 151–170. https://doi.org/10.1080/08916159808946559.

Pereira A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM.

Prasher, R., Song, D., Wang, J., & Phelan, P. (2006). Measurements of nanofluid viscosity and its implications for thermal applications. Applied Physics Letters. https://doi.org/10.1063/1.2356113.

Sadeghinezhad, E., Mehrali, M. M., Tahan Latibari, S., Mehrali, M. M., Kazi, S. N., Oon, C. S., & Metselaar, H. S. C. (2014). Experimental investigation of convective heat transfer using graphene nanoplatelet based nanofluids under turbulent flow conditions. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie501947u

ScienceDirect. (2018). The Instrumentation Systems and Automation Society (ISA). (1985). ISA-S5.5-1985: Graphic Symbols for Process Displays. American National Standard.

Utomo, A. T., Haghighi, E. B., Zavareh, A. I. T., Ghanbarpourgeravi, M., Poth, H., Khodabandeh, R., … Pacek, A. W. (2014). The effect of nanoparticles on laminar heat transfer in a horizontal tube. International Journal of Heat and Mass Transfer, 69, 77–91. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.003

Published

06/03/2021

How to Cite

OLIVEIRA, A. M. de .; GONÇALVES, L. M. .; MESQUITA, A. Z. .; BANDARRA FILHO, Ênio P. .; FERREIRA, A. G. . Thermo-hydraulic performance of nanofluids composed of functionalized multiple-walled carbon nanotubes (MWCNT-OH/water) . Research, Society and Development, [S. l.], v. 10, n. 3, p. e5910313031, 2021. DOI: 10.33448/rsd-v10i3.13031. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13031. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings