Desempenho termo-hidráulico de nanofluidos compostos por nanotubos de carbono de paredes múltiplas funcionalizados (MWCNT-OH/água)

Autores

DOI:

https://doi.org/10.33448/rsd-v10i3.13031

Palavras-chave:

Nanotecnologia; Nanotubos; Desempenho Termo-hidráulico; Nanopartículas.

Resumo

Com objetivo de avaliar a potencialidade de um novo fluido capaz de melhorar a eficiência dos processos de troca térmica nos sistemas de refrigeração, o presente trabalho propôs o estudo do desempenho termo-hidráulico de nanofluidos constituídos por nanopartículas de nanotubos de carbono do tipo MWCNT dispersos em água destilada. Foram utilizadas nanopartículas com grau de funcionalização -OH, 3%, 6% e 9% para produzir nove amostras de nanofluidos. Foi utilizado o método de “dois passos”, com auxílio de sonicação e homogeneização de alta pressão, para dispersar as nanopartículas no fluido base. Para a avaliação do desempenho termo-hidráulico foram realizadas as seguintes etapas: produção dos nanofluidos pelo método de dois passos. A utilização da bancada experimental permitiu obter os parâmetros necessários para a determinação do coeficiente de transferência de calor por convecção e desempenho termo-hidráulico.

Referências

Cárdenas Gómez, A. O., Paz Alegrias, J. G., & Bandarra Filho, E. P. (2017). Experimental analysis of the thermal-hydraulic performance of water based silver and SWCNT nanofluids in single-phase flow. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2017.06.090.

Choi, S. U. S. E Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. In International Mechanical Engineering Congress and Exhibition. San Francisco,CA.

Chupin, A., Hu, L. W., & Buongiorno, J. (2008). Proceedings of the 2008 International Congress on Advances in Nuclear Power Plants: ICAPP ’08: embedded topical meeting, June 8-12, 2008, Anaheim, California. California.: American Nuclear Society.

Gómez, A. O. C. (2019). Avaliação experimental da transferência de calor e perda de pressão de nanofluidos em escoamento monofásico em dutos. Tese.

Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2015). Fundamentos de Transferencia de Calor e de Massa. LTC- Livros Técnicos e Científicos Ltda (7th ed.). LTC. https://doi.org/10.1016/j.applthermaleng.2011.03.022.

Kazi, S. N., Duffy, G. G., & Chen, X. D. (2014). Validation of heat transfer and friction loss data for fibre suspensions in a circular and a coaxial pipe heat exchanger. International Journal of Thermal Sciences. https://doi.org/10.1016/j.ijthermalsci.2014.01.001.

Meyer, J. P. P., Mckrell, T. J. J., & Grote, K. (2013). The influence of multi-walled carbon nanotubes on single- phase heat transfer and pressure drop characteristics in the transitional flow regime of smooth tubes. International Journal of Heat and Mass Transfer, 58(1–2), 597–609. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.074.

O’Hanley, H., Buongiorno, J., McKrell, T., & Hu, L. W. (2012). Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry. Advances in Mechanical Engineering. https://doi.org/10.1155/2012/181079.

Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11(2), 151–170. https://doi.org/10.1080/08916159808946559.

Pereira A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM.

Prasher, R., Song, D., Wang, J., & Phelan, P. (2006). Measurements of nanofluid viscosity and its implications for thermal applications. Applied Physics Letters. https://doi.org/10.1063/1.2356113.

Sadeghinezhad, E., Mehrali, M. M., Tahan Latibari, S., Mehrali, M. M., Kazi, S. N., Oon, C. S., & Metselaar, H. S. C. (2014). Experimental investigation of convective heat transfer using graphene nanoplatelet based nanofluids under turbulent flow conditions. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie501947u

ScienceDirect. (2018). The Instrumentation Systems and Automation Society (ISA). (1985). ISA-S5.5-1985: Graphic Symbols for Process Displays. American National Standard.

Utomo, A. T., Haghighi, E. B., Zavareh, A. I. T., Ghanbarpourgeravi, M., Poth, H., Khodabandeh, R., … Pacek, A. W. (2014). The effect of nanoparticles on laminar heat transfer in a horizontal tube. International Journal of Heat and Mass Transfer, 69, 77–91. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.003

Downloads

Publicado

06/03/2021

Como Citar

OLIVEIRA, A. M. de .; GONÇALVES, L. M. .; MESQUITA, A. Z. .; BANDARRA FILHO, Ênio P. .; FERREIRA, A. G. . Desempenho termo-hidráulico de nanofluidos compostos por nanotubos de carbono de paredes múltiplas funcionalizados (MWCNT-OH/água) . Research, Society and Development, [S. l.], v. 10, n. 3, p. e5910313031, 2021. DOI: 10.33448/rsd-v10i3.13031. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13031. Acesso em: 30 jul. 2024.

Edição

Seção

Engenharias