Cardiometabolic risk among schoolchildren born at term and premature




Pediatric obesity; Metabolic syndrome; Infant premature.


Objective: To assess the occurrence of cardiometabolic risk (RCmet) in children aged 5 to 9 years old born premature compared to those born at term. Methodology: Cross-sectional study in which children enrolled in urban municipal schools were evaluated. They were divided into two groups: low income and middle income, considering that the economic status is one of the social determinants of health. The total sample was of 132 children, classified according to their gestational age at birth in a group of schoolchildren born at term (GST) and a group of schoolchildren born prematurely (GSP), and assessed for weight, height, waist circumference (WC), blood pressure (BP), capillary blood glucose (CBG), total cholesterol (TC) and triglycerides (TG). RCmet was also analyzed in both groups according to the WC in the >90th percentile and the >50th percentile, associated with at least two of the following criteria: TC ≥70 mg/dL; TG ≥85 mg/dL; CBG ≥126 mg/dL; Systolic/diastolic BP ≥P90 mmHg, and the WC and height ratio (WCHR). Results: Among the GST with WC >P90, 10% presented RCmet, while, for the WC >P50, 23.44% presented this risk. In GSP, there were no participants with WC above P90; in those with WC >P50, 22.22% had RCmet. Comparing the groups, there was no statistically significant difference. It was found that in 90.15% of the evaluations, there was an equivalent classification between the HR methods and the WC percentile. Conclusions: The occurrence of RCmet was evidenced in both groups, however, there was no influence of the age at birth on this risk.

Author Biographies

Geruza Mara Hednges, Federal University of Paraná

master in Biosciences and Health, Pediatric gastroentelogist. Professor at Medicine course. UFPR

Elza Daniel Melo, Federal University of Rio Grande do Sul

PhD. Assocaite professor at UFRGS, in medicine course 

Maria Lucia Bonfleur, Western Paraná State University

PhD. Assocaite prfessor at Umioeste in the Medicine course



Abep – Associação Brasileira de Empresas de Pesquisas. (2016). Critério Brasil 2015 e atualização da distribuição de classes para 2016. ABEP - Associação Brasileira de Empresas de Pesquisa. XLSTAT. (2017). Data analysis and statistics with Microsoft Excel, Paris, France.

Ahrens, W., Moreno, L. A., Mårild, S., Molnár, D., Siani, A., De Henauw, S., Böhmann, J., Günther, K., Hadjigeorgiou, C., Iacoviello, L., Lissner, L., Veidebaum, T., Pohlabeln, H., & Pigeot, I. (2014). Metabolic syndrome in young children: definitions and results of the IDEFICS study. International Journal of Obesity, 38(S2), S4–S14.

Andaki, A. C. R., Mendes, E. L., Santos, A., Brito, C., Tinôco, A. L. A., & Mota, J. (2018). Waist circumference percentile curves as a screening tool to predict cardiovascular risk factors and metabolic syndrome risk in Brazilian children. Cad Saude Publica, 34(9).

Backer, D. J. P., Bergamann, R. L., & Ogra, P. L. (2008). The window of opportunity: pre-pregnancy to 24 months of age. S Karger, 61:103-121.

Bayman, E., Drake, A. J., & Piyasena, C. (2014). Prematurity and programming of cardiovascular disease risk: a future challenge for public health? Arch Dis Child Fetal Neonatal Ed, 99(6):514-4.

Bonita, R., Beaglehole, R., & Kjellstrom, T. (2010). Epidemiologia Básica. Santos.

Brasil. (2012). Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Cadernos de Atenção Básica 33. Brasília: Ministério da Saúde. Available from:

Burgos, M. S., Burgos, L. T., Camargo, M. D., Ranke, S. I. R, Prá, D., Silva, A. et al. (2013). Associação entre medidas antropométricas e fatores de risco cardiovascular em crianças e adolescentes. Arq Bras Cardiol, 101(4):288-296.

Bussler, S., Penke, M., Flemming, G., Elhassan, Y. S., Kratzsch J., Sergeyev, E. et al. (2017). Novel insights in the metabolic syndrome in childhood and adolescence. Horm Res Paediatr, 88:181–193.

Cardoso, V. C, & Bettiol, H. (2015). Consequências metabólicas tardias da prematuridade. In: Procianoy, R. S., Leone, C. R. (Org.). PRORN - Programa de Atualização em Neonatologia. Artmed Panamericana.

Carmo, J. M., Silva, A. A., Wang, Z., Freeman, N. J., Alsheik, A. J., Adi, A., & Hall, J. E. (2016). Regulation of blood pressure, appetite, and glucose by leptin after inactivation of insulin receptor substrate 2 signaling in the entire brain or in proopiomelanocortin neurons. Hypertension, 67(2):378-386. 10.1161/HYPERTENSIONAHA.115.06153.

Chatmethakul, T., & Roghair, R. D. (2019). Risk of hypertension following perinatal adversity: IUGR and prematurity. Journal the Endocrinology, 242:1.

Chawanpaiboon, S., Vogel, J. P., Moller, A. B., Lumbiganon, P., Petzold, M., Hogan, D. et al. (2019). Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health, 7(1):e37-e46

Chen, W., & Berenson, G. S. (2007). Metabolic syndrome: definition and prevalence in children. J Pediatr, 83(1):64-70.

Dagle, J. M., Fisher, T. J., Haynes, S. E., Berends, S. K., Brophy, P. D., Morriss, F. H. Jr, & Murray, J. C. (2011). Cytochrome P450 (CYP2D6) Genotype is associated with elevated systolic blood pressure in preterm infants following NICU discharge. J Pediatr, 159(1):104–109.

Damiani, D., Kuba, V. M., Cominato, L., Dichtchekenian, V., & Menezes Filho, H. C. (2011). Síndrome metabólica em crianças e adolescentes: dúvidas na terminologia, mas não nos riscos cardiometabólicos. Arq Bras Endocrinol Metabol, 55(8):576-582.

Eberle, C., & Ament, C. (2012). Diabetic and metabolic programming: mechanisms altering the intrauterine milieu. ISRN Pediatr.

Freedman, D. S., Serdula, M. K., & Srinivasan, S. R. (1999). Relation of circumference and skinfold thicknesses to lipid and insulin concentrations in children and adolescents: the Bogalusa Heart Study. Am J Clin Nutr. 69(2):308-17.

Kapral, N. B. S., Miller, S. E., Scharf, R. J., Gurka, M. J., & DeBoer, M. D. (2018). Associations between birthweight and overweight and obesity in school-age children. Pediatr Obes, 13:6.

Kopec, G., Shekhawat, P. S., & Mhanna, M. J. (2017). Prevalence of diabetes and obesity in association with prematurity and growth restriction. Diabetes Metab Syndr Obes, 10:285-295.

Louise, T., Saud, A., Bendar, N., Durighel, G., Frost, G., & Bell, J. (2012). The effect of preterm birth on adiposity and metabolic pathways and the implications for later life. Clinical Lipidology, 7(3):275-288. 10.2217/clp.12.32.

Marciniak, A., Patro-Małysza, J., Kimber-Trojnar, Ż., Marciniak, B., Oleszczuk, J., & Leszczyńska-Gorzelak, B. (2017). Fetal programming of the metabolic syndrome. Taiwan J Obstet Gynecol, 56(2)133–138.

Morrison, K. M., Ramsingh, L., Gunn, E., Streiner, D., Van Lieshout, R., Boyle, M., Gerstein, H., Schmidt, L., & Saigal, S. (2016). Cardiometabolic health in adults born premature with extremely low birth weight. Pediatrics, 138:4.

Nambiar, S., Truby, H., Davies, P. S., & Baxter, K. (2013). Use of the waist-height ratio to predict metabolic syndrome in obese children and adolescents. J Paediatr Child Health, 49(4).

Parkinson, J. R., Hyde, M. J., Gale, C., Santhakumaran, S., & Modi, N. (2013). Preterm birth and the metabolic syndrome in adult life: a systematic review and meta-analysis. Pediatrics, 131(4):e1240–e1263.

Perenc, L., Zajkiewicz, K., Drzał-Grabiec, J., Cyran-Grzebyk, B., & Walicka-Cupryś, K. (2019). Assessment of body adiposity in preterm children at the beginning of school age. Scientific Reports, 9:6207.

Pyhälä, R., Räikkönen, K., Feldt, K., Andersson, S., Hovi, P., Eriksson, J. G., Järvenpää, A. L., & Kajantie, E. (2009). Blood pressure responses to psychosocial stress in young adults with very low birth weight: Helsinki Study of Very Low Birth Weight Adults. Pediatrics,123(2):731–734.

Quadros, T. M. B., Gordia, A. P., Andaki, A. C. R., Mendes, E. L., Mota, J., & Silva, L. R. (2019). Utility of anthropometric indicators to screen for clustered cardiometabolic risk factors in children and adolescents. J Pediatr Endocrinol Metab, 32(1):49-55.

Santos, E. G. R., Pereira, P. Y., Sekiya, D. R. U., & Goulart, R. M. M. (2019). Prevalência de risco cardiovascular a partir de parâmetros antropométricos em crianças e adolescentes. Revista Atenção à Saúde, 17(60):54-62.

SBD - Sociedade Brasileira de Diabetes. (2019). Diretrizes da Sociedade Brasileira de Diabetes: 2019-2020. Clannad.

SBP - Sociedade Brasileira de Pediatria. (2017). Novas orientações sobre o jejum para determinação laboratorial do perfil lipídico. Guia Prático de Atualização: Departamento Científico de Endocrinologia.

Scartezini, M., Ferreira, C. E. S., Izar, C., Bertoluci, M., Vencio, S., Campana, G. A. et al. (2017). Posicionamento sobre flexibilização do jejum para o perfil lipídico. Arq Bras Cardiol, 08(3):195-197.

Schmitt, J., Arnold, K., Druschke, D., Swart, E., Grählert, X., Maywald, U. et al. (2016). Early comprehensive care of preterm infants-effects on quality of life, childhood development, and healthcare utilization: study protocol for a cohort study linking administrative healthcare data with patient reported primary data. BMC pediatrics, 16, 104.

Shafiee, G., Kelishadi, R., Heshmat, R., Qorbani, M., Motlagh, M. E., Aminaee, T., et al. (2013). First report on the validity of a continuous Metabolic syndrome score as an indicator for Metabolic syndrome in a national sample of paediatric population - the CASPIAN-III study. Endokrynol Pol, 64(4):278-28.

Shim, Y. S., Kang, M. I., Yang, S., & Hwang, I. T. (2018). Irisin is a biomarker for metabolic syndrome in prepubertal children. Endocr J, 65(1):23-31.

Sipola-Leppanen, M., Vääräsmäki, M., Tikanmäki, M., Matinolli, H. M., Miettola, S., Hovi, P., et al. (2015). Cardiometabolic risk factors in young adults who were born preterm. Am J Epidemiol, 181(11):861–873

Vieira, S. A., Ribeiro, A. Q., Hermsdorff, H. H. M., Pereira, P. F., Priore, S. E., & Franceschini, S. C. C. (2018). Índice relação cintura-estatura para predição do excesso de peso em crianças. Rev Paul Pediatr, 36(1):52-58.,2018,36,1,00002.

Who - World Health Organization - WHO. (2012). Brazil: health profile. Geneva: WHO.

Wicklow, B. A., Becker, A., Chateau, D., Palmer, K., Kozyrskij, A., & Sellers, E. A. (2015). Comparison of anthropometric measurements in children to predict metabolic syndrome in adolescence: analysis of prospective cohort data. Int J Obes (Lond), 39:1070-1078.

Zhang, T., Zhang, H., Li, S., Li, Y., Liu, Y., Fernandez, C., Harville, E. et al. (2016). Impact of adiposity on incident hypertension is modified by insulin resistance in adults. Hypertension, 67:56-62. 10.1161/HYPERTENSIONAHA.115.06509.




How to Cite

HEDNGES, G. M. .; MELO, E. D.; BONFLEUR, M. L.; VIERA, C. S. . Cardiometabolic risk among schoolchildren born at term and premature. Research, Society and Development, [S. l.], v. 10, n. 3, p. e34210313277, 2021. DOI: 10.33448/rsd-v10i3.13277. Disponível em: Acesso em: 14 apr. 2021.



Health Sciences