From olive to olive oil: a general approach

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13408

Keywords:

Lipids; Fatty acids; Lipid oxidation; Olive pomace; Added value.

Abstract

This study aimed to carry out a systematic literature review about olives, extraction methods, physical and chemical characterization and identity and quality parameters of olive oils, as well as technological alternatives for using by-products. Olive oil is the oil extracted from the ripe fruits of the olive tree (Olea europaea L.). Trees have been cultivated in the Mediterranean Region for several centuries and thousands of cultivars differ by weight, size and chemical characteristics of the fruits. Currently, olive oil is produced worldwide and the olive plant was recently introduced in the city of Diamantina, Minas Gerais. The lipid content is mostly composed of oleic acid and smaller fractions of phenolic compounds, phytosterols and pigments, substances with antioxidant and bioactive activities that promote oxidative stability of the oil and beneficial effects on human health. The main extraction of olive oil consists of crushing, pressing and centrifuging, generating by-products that can be reused for recovery of compounds or generation of new products in the food industry. After extraction, the oil is submitted to several physical and chemical analyzes to define the identity and quality parameters, according to international standards. The main characteristics that define the quality of olive oil are free acidity, peroxide index, specific extinction index, instrumental color and fatty acids profile.

References

Ahmad-Qasem, M. H., Barrajón-Catalán, E., Micol, V., Mulet, A. & García-Pérez, J. V. (2013). Influence of freezing and dehydration of olive leaves (var. Serrana) on extract composition and antioxidant potential. Food Research International, 50(1), 189-196. DOI: https://doi.org/10.1016/j.foodres.2012.10.028.

Almeida, D. S., Oliveira, D. F., Souza, A. S., Anjos, M. J. & Lopes, R. T. (2015). Oil classification using x-ray scattering and principal component analysis. Anais do 2015 International Nuclear Atlantic Conference, São Paulo, Brasil.

Almeida, C. A. S., Baggio, S. R., Mariutti, L. R. B. & Bragagnolo, N. (2020). One-step rapid extraction of phytosterols from vegetable oils. Food Research International, 130, 108891. DOI: https://doi.org/10.1016/j.foodres.2019.108891.

Annab, H., Fiol, N., Villaescusa, I. & Essamri, A. (2019). A proposal for the sustainable treatment and valorization of olive mill wastes. Journal of Environmental Chemical Engineering, 7(1), e102803. DOI: https://doi.org/10.1016/j.jece.2018.11.047.

Antónia-Nunes, M., Costa, A. S. G., Bessada, S.; Santos, J.; Puga, H.; Alves, R. C.; Freitas, V. & Oliveira, M. B. P. P. (2018). Olive pomace as a valuable source of bioactive compounds: a study regarding its lipid and water-soluble components. Science of the Total Environment, 644, 229-236. DOI: https://doi.org/10.1016/j.scitotenv.2018.06.350.

Araújo, J. M. A. (2019). Química de Alimentos: teoria e prática (7a ed.). Viçosa: Editora UFV.

Ballus, C. A., Meinhart, A. D., Campos Jr, F. A. de S., Silva, L. F. de O. da., Oliveira, A. F. de. & Godoy, H. T. (2014). A quantitative study on the phenolic compound, tocopherol and fatty acid contents of monovarietal virgin olive oils produced in the southeast region of Brazil. Food Research International, 62, 74-83. DOI: https://doi.org/10.1016/j.foodres.2014.02.040.

Bakalis, S., Valdramidis, V. P., Argyropoulos, D., Ahrne, L., Chen, J., Cullen, P. J., Cummins, E., Datta, A. K., Emmanouilidis, C., Foster, T., Fryer, P. J., Gouseti, O., Hospido, A., Knoerzer, K., LeBail, A., Marangoni, A. G., Rao, P., Schüler, O. K., Taoukis, P., Xanthakis, E. & Van Impe, J. F. M. (2020). Perspectives from CO+RE: how COVID-19 changed our food systems and food security paradigms. Current Research in Food Science, 3, 166-172. DOI: https://doi.org/10.1016/j.crfs.2020.05.003.

Basumatary, B., Bhattacharya, S. & Das, A. B. (2020). Olive (Eleagnus latifolia) pulp and leather: characterization after thermal treatment ant interrelations among quality attributes. Journal of Food Engineering, 278, 109948. DOI: https://doi.org/10.1016/j.jfoodeng.2020.109948.

Borges, T. H., Pereira, J. A., Cabrera-Vique, C., Lara, L., Oliveira, A. F. & Seiquer, I. (2017). Characterization of Arbequina virgin olive oils produced in different regions of Brazil and Spain: physicochemical properties, oxidative stability and fatty acid profile. Food Chemistry, 215, 545-462. DOI: https://doi.org/10.1016/j.foodchem.2016.07.162.

Bracale, R. & Vaccaro, C. M. (2020). Changes in food choice following restrictive measures due to Covid-19. Nutrition, Metabolism and Cardiovascular Diseases, 30, 1423-1426. DOI: https://doi.org/10.1016/j.numecd.2020.05.027.

Bruscatto, M. H., Zambiazi, R. C., Crizel-Cardoso, M., Piatnicki, C. M. S., Mendonça, C. R. B., Dutra, F. L. G. & Coutinho, E. F. (2017). Chemical characterization and oxidative stability of olive oils extracted from olive trees of Southern Brazil. Pesquisa Agropecuária Brasileira, 52(12), 1231-1240. DOI: https://doi.org/10.1590/s0100-204x2017001200012.

Cardoso, L. G. V., Barcelos, M. de F. P., Oliveira, F. de., Pereira, J. de A. R., Abreu, W. C. de., Pimentel, F. de A., Cardoso, M. das. & Pereira, M. C. de A. (2010). Physicochemical characteristics and fatty acids profile of olive oils from different varieties of olive tree in southern Minas Gerais – Brazil. Semina: Ciências Agrárias, 31(1), 127-136. DOI: http://dx.doi.org/10.5433/1679-0359.2010v31n1p127.

Cavaca, L. A. S., López-Coca, I. M., Silvero, G. & Afonso, C. A. M. (2020). The olive-tree leaves as a source of high-added value molecules: Oleuropein. Studies in Natural Products Chemistry, 64, 131–180. DOI: 10.1016/B978-0-12-817903-1.00005-X.

Cazzoletti, L., Zanolin, M. E., Spelta, F., Bono, R., Chamitava, L., Garcia-Larsen, V., Mattioli, V., Pirina, P. & Ferrari, M. (2019). Dietary fats, olive oil and respiratory diseases in Italian adults: a population-based study. Clinical and Experimental Allergy, 49(6), 799-807. DOI: https://doi.org/10.1111/cea.13352.

Cheng, Z., Zhan, M., Yang, Z. & Zumstein, K. (2017). The major qualitative characteristics of olive (Olea europaea L.) cultivated in southwest China. Frontiers in Plant Science, 8, 559. DOI: 10.3389/fpls.2017.00559.

Ciafardini, G. & Zullo, B. A. (2018). Virgin olive oil yeasts: A review. Food Microbiology, 70, 245-253. DOI: 10.1016/j.fm.2017.10.010.

Damodaran, S. & Parkin, K. L. (2017). Fennema’s Food Chemistry (5a ed.). Flórida: CRC Press.

Difonzo, G., Troili, M., Squeo, G., Pasqualone, A. & Caponio, F. (2020). Functional compounds from olive pomace to obtain high-added value foods. Journal of the Science of Food and Agriculture, e10478. DOI: https://doi.org/10.1002/jsfa.10478.

Ebiad, R. & Abu-Quaoud, H. (2014). Morphological and biological characterization of three olive “Olea europaea L.” cultivars in Palestine. Jordan Journal of Agricultural Sciences, 10(1), 130-143.

Fernandes, J., Fialho, M., Santos, R., Peixoto-Plácido, C., Madeira, T., Sousa-Santos, N., Virgolino, A., Santos, O. & Carneiro, A. V. (2020). Is olive oil good for you? A systematic review and meta-analysis on anti-inflamatory benefits from regular diet intake. Nutrition, 69, 110559. DOI: 10.1016/j.nut.2019.110559.

Foscolou, A., Critselis, E. & Panagiotakos, D. (2018). Olive oil consumption and human health: A narrative review. Maturitas, 118, 60-66. DOI: 10.1016/j.maturitas.2018.10.013.

Freire, P. C. M., Mancini-Filho, J. & Ferreira, A. P. de. C. (2013). Major physical and chemical changes in oils and fats used for deep frying: regulation and effects on health. Revista de Nutrição, 26(3), 353-358. DOI: http://dx.doi.org/10.1590/S1415-52732013000300010.

Gharbi, I. & Hammami, M. (2019). Olive (Olea europaea L.) Oil (Cap. 20, pp. 405-417). Switzerland: Springer Nature. DOI: 10.1007/978-3-030-12473-1_20.

Gavahian, M., Khaneghah, A. M., Lorenzo, J. M., Munekata, P. E. S., Garcia-Mantrana, I., Collado, M. C., Meléndez-Martínez, A. J. & Baraba, F. J. (2019). Health benefits of olive oil and its components: impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends in Food Science and Technology, 88, 220-227. DOI: https://doi.org/10.1016/j.tifs.2019.03.008.

Giacometti, J., Milin, C., Giacometti, F. & Ciganj, Z. (2018). Characterization of monovarietal olive oils obtained from Croatian cvs. Drobnica and Buza during the ripening period. Foods, 7(11), e188. DOI: 10.3390/foods7110188.

Gonçalves, T. R., Rosa, L. N., Março, P. H. & Silva, L. F. O. da. (2020). Evaluation of Brazilian monovarietal extra virgin olive oils using digital images and independent component analysis. Journal of the Brazilian Chemical Society, 31(9), 1955-1963. DOI: 10.21577/0103-5053.20200083.

Guasch-Ferré, L. G., Liu, G., Li, Y., Sampson, L., Manson, J. E., Salas-Salvadó, J., Martínez-González, M. A., Stampfer, M. J., Willett, W. C., Sun, Q. & Hu, F. B. (2020). Olive oil consumption and cardiovascular risks in U.S adults. Journal of the American College of Cardiology, 75(15), 1729-1739. DOI: 10.1016/j.jacc.2020.02.036.

Houshia, O. J., AbuEid, M., Zais, O.; Shqair, H., Zaid, M., Nashariti, W., Noor, B. & Al-Rimwai, F. (2019). Alteration of Nabali Baladi Extra Virgin Olive Oil (EVOO) chemical parameters as a function of air sunlight exposure. Oilseeds & Fats Crops and Lipids, 26(38), 1-10. DOI: https://doi.org/10.1051/ocl/2019036.

Huk, T. T. S., Scapinello, J., Croce, D. M., Kihn, F., Bohn, A. & Dal, M. J. (2015). Determinação da composição química e potencial antioxidante do azeite de oliva produzido na região oeste de Santa Catarina. Anais do XX Congresso Brasileiro de Engenharia Química, 1(2). DOI: 10.5151/chemeng-cobeq2014-1051-21350-172088.

Ilarioni, L. & Proietti, P. (2014). Olive tree cultivars. (Cap. 5, pp. 59-67). Reino Unido: Wiley. DOI: https://doi.org/10.1002/9781118460412.ch5.

IOC - International Olive Council. (2000). World Catalogue of Olive Varieties. Espanha: IOC.

IOC - International Olive Council. (2003). Codex Standard for Olive Oils and Olive Pomace Oils - Codex Stan 33-1981 (2a rev.). Codex Alimentarius. Roma, Itália.

Kalogianni, E. P., Georgiou, D. & Hasanov, J. H. (2019). Olive oil processing: current knowledge, literature gaps, and future perspectives. Journal of the American Oil Chemists' Society, 96(5), 481-507. DOI: https://doi.org/10.1002/aocs.12207.

Khor, Y. P., Sim, B. I., Abas, F., Lai, O. M., Wang, Y., Wang, Y. & Tan, C. P. (2019). Quality profile determination of palm olein: potencial markers for the detection of recycled cooking oils. International Journal of Food Properties, 22(1), 1172-1182. DOI: https://doi.org/10.1080/10942912.2019.1634098.

Lama-Muñoz, A., Rodríguez-Gutiérrez, G., Rubio-Senent, F. & Fernández-Bolaños, J. (2012). Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocolloids, 28(1), 92–104. DOI: https://doi.org/10.1016/j.foodhyd.2011.11.008.

Li, L., Deng, Y., Li, Z., Zhang, Z., Gao, X., Geng, X. & Zhang, D. (2020). Resourcing potential of olive oil pomace. Thermal Science, 24(3A), 1761-1768. DOI: 10.2298/TSCI190603049L.

Lioupi, A., Nenadis, N. & Theodoridis, G. (2020). Virgin olive oil metabolomics: A review. Journal of Chromatography, 1150, 122161. DOI: https://doi.org/10.1016/j.jchromb.2020.122161.

Mansouri, F., Moumen, A. B., Aazza, S., Belhaj, K., Fauconnier, M. L., Sindic, M., Caid, S. & Elamrani, A. (2019). Quality and chemical profiles of virgin olive oils of three European cultivars suitable for super-high-density planting conditions in eastern Morocco. Materials Today: Proceedings, 13(3), 998–1007. DOI: https://doi.org/10.1016/j.matpr.2019.04.065.

Mariotti, M. & Peri, C. (2014). The composition and nutritional properties of extra‐virgin olive oil (Cap. 3, pp. 21-34). Reino Unido: Wiley. DOI: https://doi.org/10.1002/9781118460412.ch3.

Martins, L. M., Cruz, M. do C., M., Oliveira, A. F. de., Fagundes, C. P. & Santos, J. B. dos. (2015). Crescimento inicial de mudas de oliveira em competição com plantas daninhas. Revista Agrarian, 8(28), 124-132.

Medeiros, R. M. L., Villa, F., Silva, D. F. da. & Filho, L. R. C. (2016). Destination and reuse of by products from olive oil extraction. Scientia Agraria Paranaensis, 15(2), 100-108. DOI: https://doi.org/10.18188/sap.v15i2.11905.

Mello, L. D. & Pinheiro, M. F. (2012). Physico-chemical characterization of monovarietal olive oil and olive leaves of cultivars introduced in the RS State, Brazil. Alimentos e Nutrição, 23(4), 537-548.

Methamem, S., Gouta, H., Mougou, A., Mansour, M. & Boujnah, D. (2015). Yield, fruit oil content of some olive trees (Olea europaea L.) field-grown in Tunisia. Annals of Biological Research, 6(9), 64-71.

Moreira, R. A., Fernandes, D. R., Cruz, M. do C. M. da., Lima, J. E. & Oliveira, A. F. de. (2016). Water restriction, girdling and paclobutrazol on flowering and production of olive cultivars. Scientia Horticulturae, 200(8), 197-204. DOI: https://doi.org/10.1016/j.scienta.2016.01.014.

Muzzalupo, I. (2012). Olive germplasm – Italian Catalogue of Olive Varieties. Croácia: InTech.

Nazzaro, F., Fratianni, F., Cozzolino, R., Martignetti, A., Malorni, L., De Feo, V., Cruz, A. G. & d’Acierno, A. (2019). Antibacterial activity of three extra virgin olive oils of the Campania Region, Southern Italy, related to their polyphenol content and composition. Microorganisms, 7(9), 1-10. DOI: 10.3390/microorganisms7090321.

Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M. & Agha, R. (2020). The socio-economic implications of the coronavirus pandemic (COVID-19): a review. International Journal of Surgery, 78, 185-193. DOI: 10.1016/j.ijsu.2020.04.018.

Osawa, C. C.; Gonçalves, L. G. & Ragazzi, S. (2006). Potentiometric titration applied to free fatty acid determination of edible oils and fats. Química Nova, 29(3), 593-599. DOI: https://doi.org/10.1590/S0100-40422006000300031.

Papastergiadis, A., Mubiru, E., Langenhove, H. V. & Meulenaer, B. de. (2012). Malondialdehyde measurement in oxidized foods: evaluation of the spectrophotometric thiobarbituric acid reactive substances (TBARS) test in various foods. Journal of Agricultural and Food Chemistry, 60(38), 9589-9594, 2012. DOI: 10.1021/jf302451c.

Ramalho, V. C. & Jorge, N. (2006). Antioxidants used in oils, fats and fatty foods. Química Nova, 29(4), 755-760. DOI: https://doi.org/10.1590/S0100-40422006000400023.

Reboredo-Rodríquez, P., González-Barreiro, C., Cancho-Grande, B. & Simal-Gándara, J. (2014). Quality of extra virgin olive oils produced in an emerging olive growing area in north-western Spain. Food Chemistry, 164, 418-426. DOI: https://doi.org/10.1016/j.foodchem.2014.05.043.

Rios, H. C. S., Pereira, I. R. O. & Abreu, E. S. (2013). Avaliação da oxidação de óleos gorduras e azeites comestíveis em processo de fritura. Revista Ciência e Saúde, 6(2), 118-126. DOI: https://doi.org/10.15448/1983-652X.2013.2.13143.

Rodrigues, F., Pimentel, F. B. & Oliveira, M. B. P. P. (2015). Olive by-products: challenge application in cosmetic industry. Industrial crops and products, 70, 116-124. DOI: https://doi.org/10.1016/j.indcrop.2015.03.027.

Rodrigues, N., Casal, S., Peres, A. M.; Baptista, P. & Pereira, A. A. (2020). Seeking for sensory differenciated olive oils? The urge to preserve old autochtonous olive cultivars. Food Research International, 128, 108759. DOI: https://doi.org/10.1016/j.foodres.2019.108759.

Román, G. C., Jackson, R. E., Reis, J., Román, A. N.; Toledo, J. B. & Toledo, E. (2019). Extra-virgin olive oil for potential prevention of Alzheimer disease. Revue Neurologique, 175(10), 705-723. DOI: 10.1016/j.neurol.2019.07.017.

Rotich, V., Al Riza, D. F., Giametta, F., Suzuki, T., Ogawa, Y. & Kondo, N. (2020). Thermal oxidation assessment of Italian extra virgin olive oil using an UltraViolet (UV) induced fluorescence imaging system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 237, 118373. DOI: https://doi.org/10.1016/j.saa.2020.118373.

Scherer, R. & Böckel, W. J. (2018). Avaliação dos teores de ácidos graxos presentes em azeites de oliva extra virgem comercializados no vale do Taquari. Revista Destaques Acadêmicos, 10(4), 246-259. DOI: http://dx.doi.org/10.22410/issn.2176-3070.v10i4a2018.2041.

Seçmeler, O. & Galanakis, C. M. (2019). Olive fruit and olive oil (Cap. 8, pp. 193-220). Cambridge: Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-12-814887-7.00008-3.

Silva, F. A. M., Borges, M. F. M. & Ferreira, M. A. (1999). Methods for the evaluation of the degree of lipid oxidation and the antioxidant activity. Química Nova, 1(22), 94-103. DOI: https://doi.org/10.1590/S0100-40421999000100016.

Silva, L. F. de O. da., Oliveira, A. F. de., Pio, R. & Zambon, C. R. (2012). Agronomic and carpometric characterization of olive tree cultivars. Pesquisa Agropecuária Tropical, 42(3), 350-356. DOI: https://doi.org/10.1590/S1983-40632012000300012.

Spika, M. J., Zanetic, M., Kraljic, K., Paskovic, I. & Skevin, D. (2018). Changes in olive fruit characteristics and oil accumulation in “Oblica” and “Leccino” during ripening. Acta Horticulturae, 1199(86), 543-548. DOI: 10.17660/ActaHortic.2018.1199.86.

Taluri, S. S., Jafari, S. M. & Bahrami, A. (2019). Evaluation of changes in the quality of extraction oil from olive fruits stored under different temperatures and time intervals. Scientific Reports, 9, 19688. DOI: 10.1038/s41598-019-54088-z.

Uncu, O. & Ozen, B. (2020). Importance of some minor compounds in olive oil authenticity and quality. Trends in Food Science and Technology, 100, 164-176. DOI: https://doi.org/10.1016/j.tifs.2020.04.013.

Veneziani, G., Novelli, E., Esposto, S., Taticchi, A. & Servili, M. (2017). Applications of recovered bioactive compounds in food products (Cap. 11, pp. 231-253). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-805314-0.00011-X.

Vossen, P. (2013). Growing olive for oil (Cap. 2, pp. 19-56). New York: Springer. DOI: 10.1007/978-1-4614-7777-8_2.

Zicker, M. C., Craig, A. P., Ramiro, D. de O., Franca, A. S., Labanca, R. A. & Ferreira, A. V. M. (2016). Quantitative analysis of acidity level in virgin coconut oils by Fourier transform infrared spectroscopy and chemometrics. European Journal of Lipid Science and Technology, 118(9), 1350-1357. DOI: https://doi.org/10.1002/ejlt.201500407.

Wang, N., Ma, T., Yu, X., Xu, L. & Zhang, R. (2016). Determination of peroxide values of edible oils by ultraviolet spectrometric method. Food Analytical Methods, 9(5), 1412-1417. DOI: http://dx.doi.org/10.1007/s12161-015-0322-4.

Wiesman, Z. Desert olive oil cultivation – Advanced Biotechnology. (2009). Cambridge: Academic Press.

Downloads

Published

17/03/2021

How to Cite

SILVA, B. S.; SCHMIELE, M. From olive to olive oil: a general approach. Research, Society and Development, [S. l.], v. 10, n. 3, p. e32210313408, 2021. DOI: 10.33448/rsd-v10i3.13408. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13408. Acesso em: 17 apr. 2021.

Issue

Section

Review Article