Way Angiotensin Converting Enzyme (ACE) II/Ang 1-7/Mas receptor activation as a pharmacological target in cardiac pathologies: a systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13553

Keywords:

Cardiovascular Diseases; Angiotensin; Renin-Angiotensin System; Receptors, Angiotensin; Drug development.

Abstract

Objective: To understand the activation of the ECA II / Ang 1-7 / Receptor Mas route as a pharmacological target in cardiac pathologies. Methodology: This is a systematic literature review, researched in the EMBASE, MEDLINE and SCIELO databases, which used the PRISMA protocol to extract primary data and transform it into secondary data. Results: The Renina Angiotensin System is an essential component for the proper physiological functioning and homeostasis of the cardiovascular system. Being divided into two axes, the classic, which is currently used in the pharmacotherapy of hypertension and cardiovascular diseases. It is the non-classical axis that, via the angiotensin II converting enzyme (ACE II), angiotensin (1-7) and Mas receptor pathway, has demonstrated an important vasodilator and cardioprotective effect. They demonstrate a promising outcome and reinforce the effective action of MasR as a vasodilator, cardioprotection and reduction of myocardial remodeling. Final Considerations: The non-classical axis has potential in the development of drugs to expand new pharmacological strategies for cardiovascular diseases.

References

Arroja, M. M. C., Reid, E., & McCabe, C. (2016). Therapeutic potential of the renin angiotensin system in ischaemic stroke. Experimental & translational stroke medicine, 8(1), 1-14.

Awwad, Z. M., El-Ganainy, S. O., ElMallah, A. I., Khattab, M. M., & El-Khatib, A. S. (2019). Telmisartan and captopril ameliorate pregabalin-induced heart failure in rats. Toxicology, 428, 152310.

Azushima, K., Morisawa, N., Tamura, K., & Nishiyama, A. (2020). Recent research advances in renin-angiotensin-aldosterone system receptors. Current hypertension reports, 22(3), 1-10.

Basu, R., Poglitsch, M., Yogasundaram, H., Thomas, J., Rowe, B. H., & Oudit, G. Y. (2017). Roles of angiotensin peptides and recombinant human ACE2 in heart failure. Journal of the American College of Cardiology, 69(7), 805-819.

Cargnello, M., & Roux, P. P. (2011). Ativação e função das MAPKs e seus substratos, as proteínas quinases ativadas por MAPK. Microbiology and molecular biology reviews , 75 (1), 50-83.

Cildir, G., Low, K. C., & Tergaonkar, V. (2016). Noncanonical NF-κB signaling in health and disease. Trends in molecular medicine, 22(5), 414-429.

Colafella, K. M. M., Hilliard, L. M., & Denton, K. M. (2016). Épocas no equilíbrio depressor / pressor do sistema renina-angiotensina. Clinical Science, 130 (10), 761-771.

Colafella, K. M. M., Bovée, D. M., & Danser, A. J. (2019). O sistema renina-angiotensina-aldosterona e seus alvos terapêuticos. Pesquisa experimental do olho , 186 , 107680.

Cole-Jeffrey, C. T., Liu, M., Katovich, M. J., Raizada, M. K., & Shenoy, V. (2015). ACE2 and microbiota: emerging targets for cardiopulmonary disease therapy. Journal of cardiovascular pharmacology, 66(6), 540.

Costantino, S., Paneni, F., & Cosentino, F. (2016). Ageing, metabolism and cardiovascular disease. The Journal of physiology, 594(8), 2061-2073.

e Silva, A. C. S., & Teixeira, M. M. (2016). ACE inhibition, ACE2 and angiotensin-(1⿿ 7) axis in kidney and cardiac inflammation and fibrosis. Pharmacological research, 107, 154-162.

Ferreira, G. G. (2016). Avaliação in vitro de efeitos anti-inflamatórios de extratos de Pouteria torta (mart.) Radlk e Pouteria ramiflora (Mart.) Radlk.

Ferrario, C. M., & Mullick, A. E. (2017). Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacological research, 125, 57-71.

Forrester, S. J., Booz, G. W., Sigmund, C. D., Coffman, T. M., Kawai, T., Rizzo, V., & Eguchi, S. (2018). Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiological reviews, 98(3), 1627-1738.

Hao, Q., Dong, X., Chen, X., Yan, F., Wang, X., Shi, H., & Dong, B. (2018). Angiotensin-Converting Enzyme 2 Inhibits Angiotensin II–Induced Abdominal Aortic Aneurysms in Mice. Human gene therapy, 29(12), 1387-1395.

Hrenak, J., Paulis, L., & Simko, F. (2016). Angiotensin A/Alamandine/MrgD axis: another clue to understanding cardiovascular pathophysiology. International journal of molecular sciences, 17(7), 1098.

Liao, W., Fan, H., Davidge, S. T., & Wu, J. (2019). Egg white–derived antihypertensive peptide IRW (Ile‐Arg‐Trp) reduces blood pressure in spontaneously hypertensive rats via the ACE2/ang (1‐7)/mas receptor Axis. Molecular nutrition & food research, 63(9), 1900063.

Meems, L. M., Andersen, I. A., Pan, S., Harty, G., Chen, Y., Zheng, Y., & Burnett Jr, J. C. (2019). Design, synthesis, and actions of an innovative bispecific designer peptide: NPA7. Hypertension, 73(4), 900-909.

Mendoza-Torres, E., Oyarzún, A., Mondaca-Ruff, D., Azocar, A., Castro, P. F., Jalil, J. E., & Ocaranza, M. P. (2015). ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension. Therapeutic advances in cardiovascular disease, 9(4), 217-237.

Merz, A. A., & Cheng, S. (2016). Sex differences in cardiovascular ageing. Heart, 102(11), 825-831.

Moher, D., Liberati, A., Tetzlaff, & Altman. (2015). Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA. Epidemiologia e Serviços de Saúde, 24(2), 335–342. https://doi.org/10.5123/s1679-49742015000200017

Montezano, A. C., Cat, A. N. D., Rios, F. J., & Touyz, R. M. (2014). Angiotensin II and vascular injury. Current hypertension reports, 16(6), 431.

Organização Pan-Americana da Saúde e Organização Mundial da Saúde. Doenças cardiovasculares: Folha informativa. OPAS. Disponível em:https://www.paho.org/bra/index.php?option=com_content&view=article&id=5253:doencas-cardiovasculares&Itemid=1096. Recuperado em: 26 jul. 2020.

Patel, V. B., Takawale, A., Ramprasath, T., Das, S. K., Basu, R., Grant, M. B., & Oudit, G. Y. (2015). Antagonism of angiotensin 1–7 prevents the therapeutic effects of recombinant human ACE2. Journal of molecular medicine, 93(9), 1003-1013.

Patel, S. N., Ali, Q., Samuel, P., Steckelings, U. M., & Hussain, T. (2017). Angiotensin II type 2 receptor and receptor mas are colocalized and functionally interdependent in obese zucker rat kidney. Hypertension, 70(4), 831-838.

Pinter, M., & Jain, R. K. (2017). Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Science Translational Medicine, 9(410).

Povlsen, A. L., Grimm, D., Wehland, M., Infanger, M., & Krüger, M. (2020). The vasoactive Mas receptor in essential hypertension. Journal of Clinical Medicine, 9(1), 267.

Qaradakhi, T., Gadanec, L. K., McSweeney, K. R., Tacey, A., Apostolopoulos, V., Levinger, I., & Zulli, A. (2020). The potential actions of angiotensin‐converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clinical and Experimental Pharmacology and Physiology, 47(5), 751-758.

Santos, R. A. S., Sampaio, W. O., Alzamora, A. C., Motta-Santos, D., Alenina, N., Bader, M., & Campagnole-Santos, M. J. (2018). The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiological reviews, 98(1), 505-553.

South, A. M., Shaltout, H. A., Washburn, L. K., Hendricks, A. S., Diz, D. I., & Chappell, M. C. (2019). Fetal programming and the angiotensin-(1-7) axis: a review of the experimental and clinical data. Clinical Science, 133(1), 55-74.

Stegbauer, J., Thatcher, S. E., Yang, G., Bottermann, K., Rump, L. C., Daugherty, A., & Cassis, L. A. (2019). Mas receptor deficiency augments angiotensin II-induced atherosclerosis and aortic aneurysm ruptures in hypercholesterolemic male mice. Journal of vascular surgery, 70(5), 1658-1668.

Te Riet, L., van Esch, J. H., Roks, A. J., van den Meiracker, A. H., & Danser, A. J. (2015). Hipertensão: alterações do sistema renina-angiotensina-aldosterona. Circulation research , 116 (6), 960-975.

Tobón‐Arroyave, S. I., Hurtado‐García, P., García‐Quintero, O. D., Isaza‐Guzmán, D. M., & Flórez‐Moreno, G. A. (2014). Immunoexpression of NF‐ĸB and their inhibitory subunits IĸBα and IĸBβ in giant cell lesions of the jaws: implications for their clinical behavior. Journal of Oral Pathology & Medicine, 44(9), 752-760.

Tóth, A. D., Turu, G., Hunyady, L., & Balla, A. (2018). Novel mechanisms of G-protein-coupled receptors functions: AT1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk. Best Practice & Research Clinical Endocrinology & Metabolism, 32(2), 69-82.

Tufik, S., Pires, G. N., Kim, L. J., Tempaku, P., Albuquerque, R., & Andersen, M. L. (2017). Revisão sistemática sobre a epidemiologia das doenças cardiovasculares e respiratórias e suas associações com a poluição do ar em Vitória/ES. Clinical & Biomedical Research, 37(2).

Wang, J., He, W., Guo, L., Zhang, Y., Li, H., Han, S., & Shen, D. (2017). The ACE2-Ang (1-7)-Mas receptor axis attenuates cardiac remodeling and fibrosis in post-myocardial infarction. Molecular medicine reports, 16(2), 1973-1981.

Wang, D., Chai, X. Q., Magnussen, C. G., Zosky, G. R., Shu, S. H., Wei, X., & Hu, S. S. (2019). Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during mechanical ventilation. Pulmonary pharmacology & therapeutics, 58, 101833.

Zhang, W., Song, M., Qu, J., & Liu, G. H. (2018). Epigenetic modifications in cardiovascular aging and diseases. Circulation research, 123(7), 773-786.

Published

21/03/2021

How to Cite

SILVA, I. M. O. da .; CAROBA , J. de S. .; THORPE , M. A. .; SOUZA, L. K. M. de . Way Angiotensin Converting Enzyme (ACE) II/Ang 1-7/Mas receptor activation as a pharmacological target in cardiac pathologies: a systematic review. Research, Society and Development, [S. l.], v. 10, n. 3, p. e44410313553, 2021. DOI: 10.33448/rsd-v10i3.13553. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13553. Acesso em: 16 apr. 2021.

Issue

Section

Review Article