Models for BTEX evaluation in cases of oil spill on the sea, using Experimental Desing




Experimental design; Mathematical model; Oil spill; Acute toxicity; BTEX.


The objective of this study was to evaluate and obtain mathematical models, using the experimental design methodology, capable of predicting the contamination of benzene, toluene, ethylbenzene and xylenes (BTEX) in cases of oil spillage at sea, and to evaluate the acute toxicity of the soluble petroleum fraction (FSA). The factorial experimental planning was developed to describe the concentration of each compound according to the variables: oil °API, contact time oil/seawater after spillage and ambient temperature. The models presented can be used to quantitatively predict BTEX contamination in seawater with accuracy greater than 99%, within the studied ranges. The contact time oil seawater was the most determining factor in the concentration/contamination of BTEX in the Petroleum FSA. According to CL50% the soluble fraction of oil of °API 39.8 showed higher toxicity, with a LC50% of 46.07 with 1 h, and 11.38 with 96 hours of contact time oil/seawater, while the oil °API 32.8 showed lower toxicity, however presented higher concentrations of BTEX in FSA, this is possibly due to the synergistic effect of other hydrocarbons that became bioavailable to Mysidopsis juniae during the tests. The samples demonstrated potential environmental risk in cases of oil spillage, and these results can help in the development of a risk assessment of oil spills and serve as a useful analytical tool for emergencies.


Aeppli, C., Nelson, R. K., Radovi, J. R., Carmichael, C. a., Valentine, D. L., & Reddy, C. M. (2014). Recalcitrance and degradation of petroleum biomarkers upon abiotic and biotic natural weathering of Deepwater Horizon oil. Environ. Sci. Technol, 48, 6726-6734.

Associação Brasileira de Normas Técnicas, 2017. NBR15308: Ecotoxicologia aquática -Toxicidade aguda - Método de ensaio com misidáceos (Crustacea). Associação Brasileira de Normas Técnicas

Bacosa, H. P., Erdner, D. L., & Liu, Z., (2015). Differentiating the roles of photooxidation and biodegradation in the weathering of light Louisiana sweet crude oil in surface water from the Deepwater Horizon site. Mar. Pollut. Bull, 95, 265-272. 005

Barros Neto, B., Scarminio, I. S., & Bruns, R. E. (2010). Como fazer experimentos, (4a ed.), Ed. Bookman.

Booth, A. M., Sutton, P. A., Lewis, C. A., Lewis, A. C., Scarlett, A., Chau, W., Widdows, J., & Rowland, S. J. (2007). Unresolved complex mixtures of aromatic hydrocarbons: thousands of overlooked persistent, bioaccumulative, and toxic contaminants in mussels. Environ. Sci. Technol, 41, 457-464.

Breitkreitz, M. C., Souza, A. M., & Poppi, R. J. (2014). Experimento didático de quimiometria para planejamento de experimentos: avaliação das condições experimentais na determinação espectrofotométrica de ferro ii com o-fenantrolina. Química. Nova, 37, 564-573. https://doiorg/10.5935/0100-4042. 20140092

Bücker, A., Carvalho, M. S., Conceição, M. B., & Alves-Gomes, J. A. (2012) Micronucleus test and comet assay in erythrocytes of the Amazonian electric fish Apteronotus bonapartii exposed to benzene. J. Brazilian Soc. Ecotoxicol, 7, 65-73.

Cardoso, C. K. M., Santana, R. S. G., Silva, V. L., Meirelles, A. C. L. E., Mattedi, Silvana, Moreira, I. T. A., & Lobato, A. K. C. L. (2020). Kinetic and equilibrium study of petroleum adsorption using pre-treated coconut fibers. Research, Society and Development, 9 (7), e523974413.

Chanton, J., Zhao, T., Rosenheim, B. E., Joye, S., Bosman, S., Brunner, C., Yeager, K. M., Diercks, A. R., & Hollander, D., (2014). Using natural abundance radiocarbon to trace the flux of petrocarbon to the seafloor following the Deepwater Horizon oil spill. Environ. Sci. Technol, 49 (2), 847-854.

Connon, R. E., Geist, J., & Werner, I. (2012). Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors, 12 (9), 12741-12771.

Cravo-Laureau, C., & Duran, R. (2014). Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics'era. Front. Microbiol. 5, 39. .

Figuerêdo, L. P. de, Nilin, J., Silva, A. Q., Damasceno, É. P., Loureiro, S., & Costa-Lotufo, L. V., (2016a). Zinc and nickel binary mixtures act additively on the tropical mysid Mysidopsis juniae. Mar. Freshw. Res. 67 (3), 301-308.

Figuerêdo, L. P. de, Nilin, J., Silva, A. Q. da, Loureiro, S., & Costa-Lotufo, L. V., (2016b). Development of a short-term chronic toxicity test with a tropical mysid. Marine Pollution Bulletin 106, 104-108.

Fingas, M., (2011). Oil Spill Science and Technology. Prevention, Response and Cleanup. Gulf Professional Publishing.

Gebara, S. S., Ré-Poppi, N., Nascimento, A. L. C. S., & do Junior, J. L. R. (2013). Métodos para análises de HPA e BTEX em águas subterrâneas de postos de revenda de combustíveis: um estudo de caso em Campo Grande, MS, Brasil. Quím. Nova, 36 (7), 1030-1037.

Gros, J., Reddy, C. M., Aeppli, C., Nelson, R. K., Carmichael, C. a., & Arey, J. S., (2014). Resolving biodegradation patterns of persistent saturated hydrocarbons in weathered oil samples from the Deepwater Horizon disaster. Environ. Sci. Technol. 48:1628-1637.

Gutierrez, T., Berry, D., Yang, T., Mishamandani, S., McKay, L., Teske, A., & Aitken, M. D., (2013). Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the Deepwater Horizon oil spill, 8 (6), e67717.

Hall, G. J., Frysinger, G. S., Aeppli, C., Carmichael, C. a., Gros, J., Lemkau, K. L., Nelson, R. K., & Reddy, C. M., (2013). Oxygenated weathering products of Deepwater Horizon oil come from surprising precursors. Mar. Pollut. Bull, 75, 140-149. 10.1016/j.marpolbul.2013.07.048.

Hamilton, M. A., Russo, R. C., & Thurston, R. V., (1977). Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental Science & Technology,11 (7), 714-719.

Harfoot, M. B. J., Tittensor, D. P., Knight, S., Arnell, A. P., Blyth, S., Brooks, S., Butchart, S. H. M., Hutton, J., Jones, M. I., Kapos, V., Scharlemann, J. P. W., & Burgess, N. D., (2018). Present and future biodiversity risks from fossil fuel exploitation. Conserv. Lett, 11 (4), 1-13.

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), (2019). Manchas de óleo no Nordeste.

Kanjilal, B., (2015). Enhanced marine oil spill response regime for Southern British Columbia, Canada. Aquatic Procedia, 3, 74-84. https://doi. org/10. 1016/j. aqpro. 2015. 02. 230

King, G. M., Kostka, J. E., Hazen, T. C., & Sobecky, P. A., (2015). Microbial responses to the Deepwater Horizon oil spill: from coastal wetlands to the deep sea. Annu. Rev. Mar. Sci. 7:377-401. http://dx. doi. org/10. 1146/annurev-marine-010814-015543

Kiruri, L. W., Dellinger, B., & Lomnicki, S., (2013). Tar balls from deep water horizon oil spill: environmentally persistent free radicals (EPFR) formation during crude weathering. Environ. Sci. Technol. 47, 4220-4226. http://dx. doi. org/10. 1021/es305157w

Lewan, M. D., Warden, A., Dias, R. F., Lowry, Z. K., Hannah, T. L., Lillis, P. G., Kokaly, R. F., Hoefen, T. M., Swayze, G. A., Mills, C. T., Harris, S. H., & Plumlee, G. S., (2014). Asphaltene content and composition as a measure of Deepwater Horizon oil spill losses within the first 80 days. Org. Geochem, 75, 54-60. https://doi. org/10. 1016/j. orggeochem. 2014. 06. 004

Liu, Z., & Liu, J., (2013). Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill. Microbiologyopen, 2, 492-504. http://dx. doi. org/10. 1002/mbo3. 89.

Liu, Z., Liu, J., Zhu, Q., & Wu, W., (2012). The weathering of oil after the Deepwater Horizon oil spill: insights from the chemical composition of the oil from the sea surface, salt marshes and sediments. Environ. Res. Lett, 7, 035302. http://dx. doi. org/10. 1088/1748-9326/7/3/035302.

Marques, W. C., Stringari, C. E., Kirinus, E. P., Möller, O. O., Toldo, Jr. E. E., & Andrade, Jr, M. M. (2017). Numerical modeling of the Tramandaí beach oil spill, Brazil-Case study for January 2012 event. Applied Ocean Research, 65, 178-191.

McNutt, M. K., Camilli, R., Crone, T. J., Guthrie, G. D., Hsieh, P. A., Ryerson, T. B., Savas, O., & Shaffer, F., (2012). Review of flow rate estimates of the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci, 109 (50), 20260-20267.

Meador, James P., & Nahrgang, J. Characterizing Crude Oil Toxicity to Early-Life Stage Fish Based On a Complex Mixture: Are We Making Unsupported Assumptions?, 2019. Environ. Sci. Technol, 53, 11080−11092.

Melbye, A. G., Brakstad, O. G., Hokstad, J. N., Gregersen, I. K., Hansen, B. H., Booth, A. M., Rowland, S. J., & Tollefsen, K. E. (2009) Chemical and toxicological characterization of an unresolved complex mixturerich biodegraded crude oil. Environ. Toxicol. Chem., 28 (9), 1815-1824.

Nascimento, M. K. S., Loureiro, S., Souza, M. R. dos R., Alexandre, M. da R., & Nilin, J., (2020). Toxicity of a mixture of monoaromatic hydrocarbons (BTX) to a tropical marine microcrustacean. Mar. Pollut. Bull., 156, 111272.

Nissanka, I. D., & Yapa, P. D. (2018). Calculation of oil droplet size distribution in ocean oil spills: A review. Marine Pollution Bulletin, 135, 723-734.

Nilin, J., Santos, A. A. O., & Nascimento, M. K. S., (2019). Ecotoxicology assay for the evaluation of environmental water quality in a tropical urban estuary. An. Acad. Bras. Cienc. 91 (1), e20180232.

Peters, K. E., Walters, C. C., & Moldowan, J. M., (2005). The Biomarker Guide, Biomarkers and Isotopes in Petroleum Exploration and Earth History, Cambrige University Press.

Reddy, C. M., Arey, J. S., Seewald, J. S., Sylva, S. P., Lemkau, K. L., Nelson, R. K., Carmichael, C. A., McIntyre, C. P., Fenwick, J., Ventura, G. T., Van Mooy, B. A. S., & Camilli, R., (2012). Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. U. S. A. 109 (50):20229-20234.

Rekadwad, B., & Khobragade, C. N., (2015). A case study on effects of oil spills and tar-ball pollution on beaches of Goa (India). Mar. Pollut. Bull. 100 (1), 567-570. 10. 1016 / j. marpolbul. 2015. 08. 019.

Ruddy, B. M., Huettel, M., Kostka, J. E., Lobodin, V. V., Bythell, B. J., Mckenna, A. M., Aeppli, C., Reddy, C. M., Nelson, R. K., Marshall, A. G., & Rodgers, R. P., (2014). Targeted petroleomics: analytical investigation of Macondo well oil oxidation products from Pensacola Beach. Energy Fuel, 28, 4043-4050.

Saeed, T., Ali, Lulwa N., Al-Bloushi, Amal, Al-Hashash, Huda, Al-Bahloul, Majed, Al-Khabbaz, Ahmad, & Ali, Sadika G. (2013). Photodegradation of Volatile Organic Compounds in the Water-Soluble Fraction of Kuwait Crude Oil in Seawater: Effect of Environmental Factors. Water Air and Soil Pollution, 224(6), 1-15.

Saeed, T., Al-Mutairi, M., Ali, L. N., Al-Obaid, T., & Beg, M. U. (1998). The effect of temperature on the composition and relative toxicity of the water-soluble fraction of Kuwait crude oil (export) in seawater. International Journal of Environmental Analytical Chemistry, 73, 275-287. https://doi. org/10. 1080/03067319808035899

Sammarco, P. W., Kolian, S. R., Warby, R. A. F., Bouldin, J. L., Subra, W. A., & Porter, S. A. (2013) Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico. Mar. Pollut. Bull., 73 (1), 129-143. 2013.05.029

Stout, S. A., Payne, J. R., Emsbo-mattingly, S. D., & Baker, G. (2016). Weathering of field-collected floating and stranded Macondo oils during and shortly after the Deepwater Horizon oil spill. Mar. Pollut. Bull, 105 (1), 7-22.

Stout, S. A., & Wang, Z., (2007). Chemical fingerprinting of spilled or discharged petroleum-methods and factors affecting petroleum fingerprints in the environment. Oil Spill Environmental Forensics 1, 1-53.

Tournadre, J., (2014). Anthropogenic pressure on the open ocean: the growth of ship trafficrevealed by altimeter data analysis. Geophys. Res. Lett., 41, 7924-7932.

Turner, R. E., Overton, E. B., Meyer, B. M., Miles, M. S., & Hooper-Bui, L. (2014). Changes in the concentration and relative abundance of alkanes and PAHs from the Deepwater Horizon oiling of coastal marshes. Mar. Pollut. Bull. 86 (1-2), 291-297.

USEPA, United States Environmental Protection Agency. "Method 5021A (SW-846):Volatile Organic Compounds in Various Sample Matrices Using Equilibrium Headspace Analysis. Revision 2, July 2014. Washington, DC.

USEPA, United States Environmental Protection Agency. "Method 8260B (SW-846): Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry (GC / MS)," Revision 2, December 1996. Washington, DC.




How to Cite

ANJOS, R. B. dos .; SILVA, W. P. N. .; SILVA, A. R. da .; MEDEIROS, G. F. de; SILVA, A. A. D. da .; BARROS, S. R. da S. .; CARVALHO FILHO, E. V. de . Models for BTEX evaluation in cases of oil spill on the sea, using Experimental Desing. Research, Society and Development, [S. l.], v. 10, n. 3, p. e44610313555, 2021. DOI: 10.33448/rsd-v10i3.13555. Disponível em: Acesso em: 16 apr. 2021.