A brief review of the theory of cross-kingdom miRNA transfer

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13580

Keywords:

Cross-kingdom transfer; MiRNA; Plant-based diet; XenomiRs.

Abstract

Recently, the academic world has been discussing the theory called “cross-kingdom transfer” in the nutritional scope. It has the idea that bioactive genetic material has the potential to be transferred from plants to animals via the gastrointestinal tract. Upon reaching its site of action, this exogenous molecule would be able to influence the pathophysiological conditions of its recipient organism. MicroRNAs (miR) are molecules listed as capable of carrying out this action. They are responsible for adhering to messenger RNA molecules and preventing their translation, thereby regulating various cellular mechanisms, including cell cycle control. This review article aimed to provide an overview of research in this controversial field. It is concluded that, although more research is needed in order to clarify issues related to the theme, some studies indicate that food can serve to the transfer of miRNAs from one kingdom or from one species to another.

References

Barampama, Z., & Simard, R. E. (1994). Oligossaccharides, antinutritional factors, and protein digestibility of dry beans as effect processing. Journal Food Science, 59(4), 833-838.

Chan, S. Y., & Snow, J. W. (2017). Formidable challenges to the notion of biologically important roles for dietary small RNAs in ingesting mammals. Genes & Nutrition, 12(13), https://doi.org/10.1186/s12263-017-0561-7.

Chin, A. R., Fong, M. Y., Somlo, G., Wu, J., Swiderski, P., Wu, X., & Wang, S. E. (2016). Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Research, 26(2), 217–228.

Dang, P. M., & Chen, Y. C. (2013). Modified method for combined DNA and RNA isolation from peanut and others oil seeds. Molecular Biology Report, 40, 1563-1568.

Dickinson, B., Zhang, Y., Petrick, J.S., Heck, G., Ivashuta, S., & Marshall, W.S. (2013). Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nature Biotechnology 31(11):965-967. 10.1038/nbt.2737.

Friedman, R. C.; Farh, K. K.-H.; Burge, C. B.; & Bartel, D. P. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92-105.

Gong, C., Tian, J., Wang, Z., Gao, Y., Wu, X., Ding, X., Qiang, Li, G., Han, Z., Yaun, Y., & Gao, S. (2019). Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modifeid microRNA 159 for triple-negative breast câncer therapy. Journal of Nanobiotechnology, 17(93), https://doi.org/10.1186/s12951-019-0526-7.

Hu, Y. B., Li, C. B., Song, N. Zou, Y., Chen, S. D., Ren, R. J., & Wag, G. (2016). Diagnostic value of microRNA for Alzheimer´s Diases: a systematic rewiew and meta-analysis. Frontiers in Aging Neuroscience, 8(13), 1-13.

Huang, H., Davis, C. D., & Wang, T. (2018). Extensive Degradation and Low Bioavailability of Orally Consumed Corn miRNAs in Mice. Nutrients, 10(2), 215. https://doi.org/10.3390/nu10020215

Khokar, S.; & Chauhan, B.M. (1986) Antinutritional factors in Moth Bean (Vigna aconitifolia): Varietal differences and effects of methods of domestic processing and cooking. Journal Food Science, 51(3), 591-594.

Li, J., Zhang, Y., Li, D., Liu, Y., Chu, D., Jiang, X., Hou, D., Zen, K., & Zhang, C. Y. (2015). Small noncoding RNAs transfer through mammalian placenta and directly regulate fetal gene expression. Protein and Cell 63:391-396 10.1007/s13238-015-0156-2.

Li, Z., Xu, R., Li, N. (2018). MicroRNAs from plants to animals, do they define a new Messenger for communication? Nutrition & Metabolism, 15 (68)

Lukasik, A., & Zielenkiewicz, P. (2014). In silico identification of plant miRNAs in mammalian breast milk exosomes - a small step forward? PLOS ONE 9(6):e99963 DOI 10.1371/journal.pone.0099963.

Luo, Y., Wang, P., Wang, X., Wang, Y., Mu, Z., Li, Q., Fu, Y., Xiao, J., Li, G., Ma, Y., Gu, Y., Jin, L. M. J., Tang, Q., Jiang, A., Li, X., & Li, M. (2017). Detection of dietetically absorbed maize-derived microRNAs in pigs. Scientific Reports 7:645 DOI 10.1038/s41598-017-00488-y.

Micó, V., Martín, R., Lasunción, M. A., Ordovás, J. M., & Daimiel, L. (2016). Unsuccessful detection of plant MicroRNAs in Beer, extra virgin olive oil and human plasma after an acute ingestion of extra virgin olive oil. Plant Foods for Human Nutrition 71(1):102-108. 10.1007/s11130-016-0534-9.

Millar, A. A., & Lohe, A., Wong, G. (2019). Biology and Function of miR159 in plants. Plants, 8(8), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724108/

Oliveira, M. A. (2012). Brotos de soja: produção, características nutricionais, análise sensorial e processamento. Brazilian Journal Food Technology,16(1),34-41.

Peng, Y., & Croce, C. M. (2018). The role of microRNAs in humam câncer. Signal transduction and targeted therapy, 1. Recuperado em: janeiro, 2018, de https://doi.org/10.1038/sigtrans.2015.4.

Perge, P., Nagy, Z., Decmann, A., Igaz, I., & Igaz, P. (2017). Potential relevance of microRNAs in inter-species epigenetic communication and implications for disease pathogenisis. RNA Biology, 14(4), 391-401.

Philip, A., Ferro, V. A., & Tate, R. (2015). Determination of the potential bioavailability of plant microRNA using a simulated human digestion process. Molecular Nutrition & Food Research (59), 1962-1972.

Reyes, J. L., & Chua, N. H. (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. The Plant Journal, 49(4), 592-606.

Snow, J.W., Hale, A. E., Isaacs, S. K., Baggish, A. L., & Chan, S. Y. (2013). Ineffective delivery of diet derived microRNAs to recipient animal organisms. RNA Biology 10(7):1107-1116 DOI 10.4161/rna.24909

Witwer, K. W. (2012). XenomiRs and miRNA homeostasis in heath and disease. RNA Biology, 9(9), 1147-1154.

Witwer, K. W., Mcalexander, M. A., Queen, S. E., & Adams, R. J. (2013). Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs. RNA Biology 10(7):1080-1086. 10.4161/rna.25246.

Witwer, K. W., & Zhang, C. Y. (2017). Diet-derived microRNAs: unicorn or silver bullet? Genes & Nutriotion, 12(15). https://doi.org/10.1186/s12263-017-0564-4.

Yang, J., Farmer, L M., Agyekum, A. A. A., Elbaz-Younes, I., & Hirschi, K. D. (2015). Detection of na abundant plant-based small RNA in healthy consumers. PLOS ONE 10(9):e0137516 DOI 10.1371/journal.pone.0137516.

Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., Li, J., Bian, Z., Liang, X., Cai, X., Yin, Y., Wang, C., Zhang, T., Zhu, D., Xu, J., Chen, Q., Ba, Y., Liu, J., Wang, Q., Chen, J., Wang, J., Wang, M., Zhang, Q., Zhang, J., Zen, K., & Zhang, C. Y. (2012). Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Research, 22(1), 107-126.

Zhang, Y., Wiggins, B.E., Lawrence, C., Petrick, J., Ivashuta, S., & Heck, G. (2012). Analysis of plant-derived miRNAs in animal small RNA datasets. BMC Genomics 13:381. 10.1186/1471-2164-13-3

Zhou, Z., Li, X., Liu, J., Dong, L., Chen, Q., Liu, J., & Kong, H. (2015). Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Research, 25(1), 39-49.

Published

20/03/2021

How to Cite

OLIVEIRA, M. F. de .; FAI, A. E. C. .; CITELLI, M. A brief review of the theory of cross-kingdom miRNA transfer . Research, Society and Development, [S. l.], v. 10, n. 3, p. e39510313580, 2021. DOI: 10.33448/rsd-v10i3.13580. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13580. Acesso em: 15 jan. 2025.

Issue

Section

Review Article