Uma breve revisão sobre a teoria de transferência de miRNA entre reinos

Autores

DOI:

https://doi.org/10.33448/rsd-v10i3.13580

Palavras-chave:

Dieta baseada em plantas; Cross-kingdom transfer; MiRNA; XenomiRs.

Resumo

Recentemente, o meio acadêmico vem discutindo a teoria chamada de “cross-kingdom transfer”, em tradução livre “transferência cruzada entre reinos” no âmbito nutricional. Esta tem ideia de que material genético bioativo tem o potencial de ser transferido de plantas para animais via trato gastrointestinal. Ao alcançar o seu sítio de atuação, esta molécula exógena seria capaz de influenciar as condições fisiológicas de seu organismo receptor. Os microRNAs (miR) são moléculas não codificantes, cotadas como sendo capazes de realizar esta ação. São responsáveis por aderirem a moléculas de RNA mensageiros e impedir sua tradução, desta forma regulando vários mecanismos celulares, inclusive o ciclo celular. Este artigo de revisão teve como objetivo montar um panorama das pesquisas neste controverso campo. Conclui-se que, embora sejam necessárias mais pesquisas a respeito para que se possam esclarecer questões relativas ao tema, alguns estudos indicam que os alimentos são capazes de veicular a transferência de miRNAs de um reino ou de uma espécie para outra.

Referências

Barampama, Z., & Simard, R. E. (1994). Oligossaccharides, antinutritional factors, and protein digestibility of dry beans as effect processing. Journal Food Science, 59(4), 833-838.

Chan, S. Y., & Snow, J. W. (2017). Formidable challenges to the notion of biologically important roles for dietary small RNAs in ingesting mammals. Genes & Nutrition, 12(13), https://doi.org/10.1186/s12263-017-0561-7.

Chin, A. R., Fong, M. Y., Somlo, G., Wu, J., Swiderski, P., Wu, X., & Wang, S. E. (2016). Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Research, 26(2), 217–228.

Dang, P. M., & Chen, Y. C. (2013). Modified method for combined DNA and RNA isolation from peanut and others oil seeds. Molecular Biology Report, 40, 1563-1568.

Dickinson, B., Zhang, Y., Petrick, J.S., Heck, G., Ivashuta, S., & Marshall, W.S. (2013). Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nature Biotechnology 31(11):965-967. 10.1038/nbt.2737.

Friedman, R. C.; Farh, K. K.-H.; Burge, C. B.; & Bartel, D. P. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92-105.

Gong, C., Tian, J., Wang, Z., Gao, Y., Wu, X., Ding, X., Qiang, Li, G., Han, Z., Yaun, Y., & Gao, S. (2019). Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modifeid microRNA 159 for triple-negative breast câncer therapy. Journal of Nanobiotechnology, 17(93), https://doi.org/10.1186/s12951-019-0526-7.

Hu, Y. B., Li, C. B., Song, N. Zou, Y., Chen, S. D., Ren, R. J., & Wag, G. (2016). Diagnostic value of microRNA for Alzheimer´s Diases: a systematic rewiew and meta-analysis. Frontiers in Aging Neuroscience, 8(13), 1-13.

Huang, H., Davis, C. D., & Wang, T. (2018). Extensive Degradation and Low Bioavailability of Orally Consumed Corn miRNAs in Mice. Nutrients, 10(2), 215. https://doi.org/10.3390/nu10020215

Khokar, S.; & Chauhan, B.M. (1986) Antinutritional factors in Moth Bean (Vigna aconitifolia): Varietal differences and effects of methods of domestic processing and cooking. Journal Food Science, 51(3), 591-594.

Li, J., Zhang, Y., Li, D., Liu, Y., Chu, D., Jiang, X., Hou, D., Zen, K., & Zhang, C. Y. (2015). Small noncoding RNAs transfer through mammalian placenta and directly regulate fetal gene expression. Protein and Cell 63:391-396 10.1007/s13238-015-0156-2.

Li, Z., Xu, R., Li, N. (2018). MicroRNAs from plants to animals, do they define a new Messenger for communication? Nutrition & Metabolism, 15 (68)

Lukasik, A., & Zielenkiewicz, P. (2014). In silico identification of plant miRNAs in mammalian breast milk exosomes - a small step forward? PLOS ONE 9(6):e99963 DOI 10.1371/journal.pone.0099963.

Luo, Y., Wang, P., Wang, X., Wang, Y., Mu, Z., Li, Q., Fu, Y., Xiao, J., Li, G., Ma, Y., Gu, Y., Jin, L. M. J., Tang, Q., Jiang, A., Li, X., & Li, M. (2017). Detection of dietetically absorbed maize-derived microRNAs in pigs. Scientific Reports 7:645 DOI 10.1038/s41598-017-00488-y.

Micó, V., Martín, R., Lasunción, M. A., Ordovás, J. M., & Daimiel, L. (2016). Unsuccessful detection of plant MicroRNAs in Beer, extra virgin olive oil and human plasma after an acute ingestion of extra virgin olive oil. Plant Foods for Human Nutrition 71(1):102-108. 10.1007/s11130-016-0534-9.

Millar, A. A., & Lohe, A., Wong, G. (2019). Biology and Function of miR159 in plants. Plants, 8(8), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724108/

Oliveira, M. A. (2012). Brotos de soja: produção, características nutricionais, análise sensorial e processamento. Brazilian Journal Food Technology,16(1),34-41.

Peng, Y., & Croce, C. M. (2018). The role of microRNAs in humam câncer. Signal transduction and targeted therapy, 1. Recuperado em: janeiro, 2018, de https://doi.org/10.1038/sigtrans.2015.4.

Perge, P., Nagy, Z., Decmann, A., Igaz, I., & Igaz, P. (2017). Potential relevance of microRNAs in inter-species epigenetic communication and implications for disease pathogenisis. RNA Biology, 14(4), 391-401.

Philip, A., Ferro, V. A., & Tate, R. (2015). Determination of the potential bioavailability of plant microRNA using a simulated human digestion process. Molecular Nutrition & Food Research (59), 1962-1972.

Reyes, J. L., & Chua, N. H. (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. The Plant Journal, 49(4), 592-606.

Snow, J.W., Hale, A. E., Isaacs, S. K., Baggish, A. L., & Chan, S. Y. (2013). Ineffective delivery of diet derived microRNAs to recipient animal organisms. RNA Biology 10(7):1107-1116 DOI 10.4161/rna.24909

Witwer, K. W. (2012). XenomiRs and miRNA homeostasis in heath and disease. RNA Biology, 9(9), 1147-1154.

Witwer, K. W., Mcalexander, M. A., Queen, S. E., & Adams, R. J. (2013). Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs. RNA Biology 10(7):1080-1086. 10.4161/rna.25246.

Witwer, K. W., & Zhang, C. Y. (2017). Diet-derived microRNAs: unicorn or silver bullet? Genes & Nutriotion, 12(15). https://doi.org/10.1186/s12263-017-0564-4.

Yang, J., Farmer, L M., Agyekum, A. A. A., Elbaz-Younes, I., & Hirschi, K. D. (2015). Detection of na abundant plant-based small RNA in healthy consumers. PLOS ONE 10(9):e0137516 DOI 10.1371/journal.pone.0137516.

Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., Li, J., Bian, Z., Liang, X., Cai, X., Yin, Y., Wang, C., Zhang, T., Zhu, D., Xu, J., Chen, Q., Ba, Y., Liu, J., Wang, Q., Chen, J., Wang, J., Wang, M., Zhang, Q., Zhang, J., Zen, K., & Zhang, C. Y. (2012). Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Research, 22(1), 107-126.

Zhang, Y., Wiggins, B.E., Lawrence, C., Petrick, J., Ivashuta, S., & Heck, G. (2012). Analysis of plant-derived miRNAs in animal small RNA datasets. BMC Genomics 13:381. 10.1186/1471-2164-13-3

Zhou, Z., Li, X., Liu, J., Dong, L., Chen, Q., Liu, J., & Kong, H. (2015). Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Research, 25(1), 39-49.

Downloads

Publicado

20/03/2021

Como Citar

OLIVEIRA, M. F. de .; FAI, A. E. C. .; CITELLI, M. Uma breve revisão sobre a teoria de transferência de miRNA entre reinos . Research, Society and Development, [S. l.], v. 10, n. 3, p. e39510313580, 2021. DOI: 10.33448/rsd-v10i3.13580. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13580. Acesso em: 1 jul. 2024.

Edição

Seção

Artigos de Revisão