Plastics in the cold marine environment: a review of the potential for microbial biodegradation




Plastic; Ocean; Extreme environment; Bioremediation; Psychrophilic.


Plastics are widely used products due to their desirable properties for several industrial sectors, such as durability, plasticity, and transparency. Tons of this material has been accumulating in different environments around the world, making it an environmental problem. An alternative to eliminating this material is the search for microorganisms adapted to the cold, which develop different catalytic pathways to adapt to low temperatures, being able to synthesize enzymes capable of metabolizing these materials. Due to the absence or low activity of these enzymes, this strategy is still a challenge with no effective solution. The purpose of this review was to evaluate research on the biodegradation of plastics by microorganisms from cold marine environments, in the last 10 years, using the following descriptors: “Plastic biodegradation AND cold oceans”, “Plastic biodegradation AND (Psychrophile OR Psychrophilic)”, “PETases AND (bacteria OR fungus)” and “Extremophile AND plastic biodegradation”. A survey of publications was carried out on the scientific bases Pubmed, Scopus, and on the Google Scholar search tool. About 11.481 works were found, of which 97.9%, 1.84%, and 0.26% were retrieved from Google Scholar, Scopus, and Pubmed, respectively. Species belonging to the genera Streptomyces, Corynebacterium, Arthrobacter, Micrococcus, Pseudomonas, and Rhodococcus were the most frequently mentioned as potential degraders of plastics in cold marine environments. The results of this work show that studies focused on the degradation of plastics by microorganisms in a cold environment are still scarce, thus opening perspectives for new studies to be carried out addressing this theme.


Almeida, E. L. Rincón, A. F. C. Jackson, S. A. & Dobson, L. D. W. (2019). In silico Screening and Heterologous Expression of a Polyethylene Terephthalate Hydrolase (PETase)-Like Enzyme (SM14est) With Polycaprolactone (PCL)-Degrading Activity, From the Marine Sponge-Derived Strain Streptomyces sp. SM14. Front Microbiol, 10:2187.

Andrady, A. L. (2011). Microplastics in the marine environment. Marine pollution bulletin, 62(8), 1596-1605.

Bergmann, M. & Klages, M. (2012). Increase of litter at the Arctic deep-sea observatory HAUSGARTEN. Mar Pollut Bull, 64(12):2734–2741

Bryant, J. A. Clemente, T. M. Viviani, D. A. Fong, A. A. Thomas, K. A. Kemp, P. et al. (2016). Diversity and activity of aommunities inhabiting plastic debris in the North Pacific gyre. mSystems 1:e00024-16.

Camargo, J. F. Farias, J. B. Paim, M. G. Lopes, B. Teixeira, L. G. Rosa, M. P. & Contesini, E. A. (2020). Antimicrobianos utilizados no tratamento da pneumonia aspirativa em cães: revisão de literatura. Research Society and Development, 9(12):e11091210805.

Cantera, S.; Sánchez-Andrea, I.; Lebrero, R.; García-Encina, P.A.; Stams, Alfons J.M.; Muñoz, R. (2018). Multi-production of high added market value metabolites from diluted methane emissions via methanotrophic extremophiles. Bioresource Technology.

Carniel, A. Valoni, E. Junior, J. N. Gomes, A. C. & Castro, A. M. (2016). Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochemistry, 56(A):84-90

Chauhan, D. Agrawal, G. Deshmukh, S. Roy, S. S. & Priyadarshini, R. (2018). Biofilm formation by Exiguobacterium sp. DR11 and DR14 alter polystyrene surface properties and initiate biodegradation. RSC Advances, 8(66):37590–37599.

Cook, G. Teufel, A. Kalra, I. Li, E. Wang, X, et al. (2019). The Antarctic psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV exhibit differential restructuring of photosystem I in response to iron. Photosynth Res, 141(2):209-228.

Costa, A. M. Lopes, V. R. O. Vidal, L. Nicaud, J.-M. Castro, A. M. & Coelho, A. Z. (2020). Poly(ethylene terephthalate) (PET) degradation by Yarrowia lipolytica: Investigations on cell growth, enzyme production and monomers consumption. Process Biochemistry, 95:81-90.

Dastgheib, S. M. M. Amoozegar, M. A. Khajeh, K. Shavandi, M. & Ventosa, A. (2012). Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Applied Microbiology and Biotechnology, 95(3):789–798

Debroas, D. Mone, A. & Ter Halle, A. (2017). Plastics in the North Atlantic garbage patch: a boat-microbe for hitchhikers and plastic degraders. Sci Total Environ, 599:1222–1232.

Dussud, C. Hudec, C. George, M. Fabre, P. Higgs, P. et al. (2018). Colonization of Non-biodegradable and Biodegradable Plastics by Marine Microorganisms. Front Microbiol 9:1571.

Dussud, C. & Ghiglione, J.-F. (2014). Bacterial degradation of synthetic plastics. In: Marine Litter in the Mediterranean and Black Seas, (ed. F. Briand), Paris: CIESM Publisher.

Ellen MacArthur Foundation (2016). The new plastics economy: rethinking the future of plastics. Recuperado de

Eriksen, M., Lebreton, L. C., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., ... & Reisser, J. (2014). Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PloS one, 9(12), e111913.

Geweret, B. Plassmann, M. M. & MacLeod, M. (2015). Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Processes Impacts, 17:1513–1521.

Geyer, R. Jambeck, J. R. & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Sci Adv, 3(7), e1700782.

Giacomucci, L. Raddadi, N. Soccio, M. Lotti, N. & Fava, F. (2020). Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia. Marine Environmental Research, 158:104949.

Gregory, M. R. (2009). Environmental implications of plastic debris in marine settings-entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans R Soc B, 364(1526), 2013−2025.

Haernvall, K. Zitzenbacher, S. Wallig, K. Yamamoto, M. Schick, M. B. Ribitsch, D. & Guebitz, G. M. (2017). Hydrolysis of ionic phthalic acidbased polyesters by wastewater microorganisms and their enzymes. Environ Sci Technol, 51:4596–4605.

Haernvall, K. Zitzenbacher, S. Biundo, A. Yamamoto, M. Schick, M. B. Ribitsch, D. & Guebitz, G.M. (2018). Enzymes as enhancers for the biodegradation of synthetic polymers in wastewater. ChemBioChem, 19:317–325.

Harshvardhan, K. & Bhavanath, J. (2013). Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Pollution Bulletin, 77(1-2):100–106.

Harrison, J. P. Sapp, M. Schratzberger, M. & Osborn, A. M. (2011). Interactions between microorganisms and marine microplastics: a call for research. Mar Technol Soc J, 45:12–20.

Ingavale, R. & Raut, P. D. (2018). Comparative biodegradation studies of LDPE and HDPE using Bacillus weihenstephanensis isolated from garbage soil. Nat Environ Pollut Technol, 17, 649–655.

İpekoglu, B. Böke, H. & Çizer, Ö. (2007). Assessment of material use in relation to climate in historical buildings. Build Environ, 42:970–978.

Jacquin, C. J. Odobel, C. Pandin, C. Conan, P. Pujo-Pay, M. et al. (2019). Microbial Ecotoxicology of Marine Plastic Debris: A Review on Colonization and Biodegradation by the “Plastisphere”. Front Microbiol, 10:865.

Joo, S. Cho, I. J. Seo, H. Son, H. F. Sagong, H.-Y. et al. (2018). Structural insight into molecular mechanism of poly (ethylene terephthalate) degradation. Nat Commun, 9(1):382.

Kumar, V. Maitra, S. S. Singh, R. & Burnwal, D. K (2020). Acclimatization of a newly isolated bacteria in monomer tere-phthalic acid (TPA) may enable it to attack the polymer poly-ethylene tere-phthalate (PET). Journal of Environmental Chemical Engineering, 8(4):103977

Kumaravel, S. Hema, R. & Lakshmi, R. (2010). Production of polyhydroxybutyrate (Bioplastic) and its biodegradation by Pseudomonas lemoignei and Aspergillus niger. E-J, Chem, 7:S536–S542.

Kyaw, B. M. Champakalakshmi, R. Sakharkar, M. K. Lim, C. S. & Sakharkar, K. R. (2012). Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbiol, 52:411–419.

Lamendella, R. Strutt, S. Borglin, S. Chakraborty, R. Tas, N. et al. (2014). Assessment of the Deepwater Horizon oil spill impact on Gulf coast microbial communities. Front Microbiol, 5:130.

Margesin, R. & Miteva, V. (2011). Diversity and ecology of psychrophilic microorganisms. Res Microbiol, 1623:46–361.

Mattsson, K. Hansson, L. A. & Cedervall, T. (2015). Nano-plastics in the aquatic environment. Environ Sci Proces and Impacts, 17(10), 1-17

Martínez-Tobón, D. I. Gul, M. Elias, A. L. & Sauvageau, D. (2018). Polyhydroxybutyrate (PHB) biodegradation using bacterial strains with demonstrated and predicted PHB depolymerase activity. Appl Microbiol Biotechnol, 102:8049–8067.

Mehetre, G. Shah, M. Dastager, S. G. & Dharne, M. S. (2018). Untapped bacterial diversity and metabolic potential within Unkeshwar hot springs, India. Arch Microbiol, 200:753–770.

Meyer-Cifuentes, I. Werner, J. Heuer, A. Jehmlich N. & Öztürk, B. (2020). Synergistic degradation of a biodegradable plastic film by a marine microbial community. Access Microbiology, (2)7A.

Nimchua, T. Punnapayak, H. & Zimmermann, W. (2007). Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi. Biotechnol J, 2:361–364.

O'Brine, T. e Thompson, RC (2010). Degradation of Plastic Carrier Bags in the Marine Environment. Marine Pollution Bulletin, 60, 2279-2283.

Ottoni, J. R. Rodrigues, S. T. Maia, O. V. Passarini, M. R. Z. (2020). Characterization of amylase produced by cold-adapted bacteria from Antarctic samples. Biocatalysis and Agricultural Biotechnology, 20:101452.

Ouada, S. B. Ali, R. B. Leboulanger, C. Zaghden, H. Choura, S. Ouada, H. B. & Sayadi, S. (2018). Effect and removal of bisphenol A by two extremophilic microalgal strains (Chlorophyta). Journal of Applied Phycology, 30:1765–1776

Pärnänen, K., Karkman, A., Virta, M., Eronen-Rasimus, E., & Kaartokallio, H. (2015). Discovery of bacterial polyhydroxyalkanoate synthase (PhaC)-encoding genes from seasonal Baltic Sea ice and cold estuarine waters. Extremophiles, 19(1), 197-206.

Paço, A. Duarte, K. da Costa, J. P. Santos, P. S. M. Pereira, R. Pereira, M. E. et al. (2017). Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of The Total Environment, 586:10–15.

Peixoto, J. Silva, L. P. & Krüger, R. H. (2017). Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater, 324,634–644.

Pereira, A. S. Shitsuka, D. M. Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de: em:

Pérez, Rebeca; Cantera, Sara; Bordel, Sergio; García-Encina, Pedro A.; Muñoz, Raúl (2019). The effect of temperature during culture enrichment on methanotrophic polyhydroxyalkanoate production. International Biodeterioration & Biodegradation.

Pramila, R. (2012). Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronellolis - Potential candidates for biodegradation of low density olyethylene (LDPE). J Bacterio. Res, 4:9–14.

Ritchie, H. & Roser, M. (2018). Plastic pollution. Recuperado de

Rogala, M. M. Gawor, J. Gromadka, R. Kowalczyk, M. & Grzesiak, J. (2020). Biodiversity and Habitats of Polar Region Polyhydroxyalkanoic Acid-Producing Bacteria: Bioprospection by Popular Screening Methods. Genes, 11(8):873.

Sekiguchi, T. Sato, T, Enoki, M. Kanehiro, H. Uemtsu, K. & Kato, C. (2010). Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Rep Res Dev, 11:33-41

Sekiguchi, T. Sato, T. Enoki, M. Kanehiro, H. & Kato, C. (2010) Procedure for isolation of the plastic degrading piezophilic bacteria from deep-sea environments. Journal of Japanese Society for Extremophiles, 9(1):25–30.

Sheik, S. Chandrashekar, K. R. Swaroop, K. & Somashekarappa, H. M. (2015). Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeterior Biodegradation, 105, 21–29.

Singh, G. B. Gupta, S. & Gupta, N. (2013). Carbazole degradation and biosurfactant production by newly isolated Pseudomonas sp. strain GBS.5. International Biodeterioration & Biodegradation, 84:35-43

Sowmya, H. V. Ramalingappa, M. & Krishnappa, M. (2012). Degradation of polyethylene by Chaetomium sp. and Aspergillus Flavus. Int J Recent Sci Res, 3:513–517.

Summera Rafiq, R. Ishrath Razia, S. K. Jasmine Shahina, K. & Vijaya Ramesh. (2018). Screening of Extracellular Hydrolytic Enzymes from Halophilic bacteria and Biodegradation of LDPE. International Journal of Advanced Scientific Research and Management, 3(7):195-200.

Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Franchini, Martina; Repouskou, Eftychia; Kaliva, Maria; Vamvakaki, Maria; Kolvenbach, Boris; Fava, Fabio; Corvini, Philippe F.-X.; Kalogerakis, Nicolas (2017). Biodegradation of weathered polystyrene films in seawater microcosms. Scientific Reports.

Trzcinski, A. P. & Stuckey, D. C. (2010). Treatment of municipal solid waste leachate using a submerged anaerobic membrane bioreactor at mesophilic and psychrophilic temperatures: Analysis of recalcitrants in the permeate using GC-MS. Water Research, 44(3): 671-680

Undabarrena, A. Beltrametti, F. Claverías, F. P. González, M. Moore, E. R. B. & Seeger, M. (2016). Cámara B. Exploring the diversity and antimicrobial potential of marine actinobacteria from the comau fjord in Northern Patagonia, Chile. Front Microbiol, 7:1135.

Urbanek, A. K. Rymowicz, W. & Mirończuk, M. A. (2018). Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Applied Microbiology and Biotechnology, 102:7669–7678.

Veiga, J. M. Fleet, D. Kinsey, S. Nilsson, P. Vlachogianni, T. et al. (2016). Identifying sources of marine litter. MSFD GES TG Marine Litter Thematic Report; JRC Technical Report; EUR 28309

Waller, C. L. Griffiths, H. J. Waluda, C. M. Thorpe, S. E. Loaiza, I. et al. (2017). Microplastics in the Antarctic marine system: an emerging area of research. Sci Total Environ 598:220–227.

Xu, X. Wang, S. Gao, F. Li, J. Zheng, L. et al. (2019). Marine microplastic-associated bacterial community succession in response to geography, exposure time, and plastic type in China's coastal seawaters. Marine Pollution Bulletin, 145: 278-286.

Yang, M. Dongwei, Lu. Jiaxuan, Y. Yumeng, Z. Qi, Z. et al. (2019). Carbon and nitrogen metabolic pathways and interaction of cold-resistant heterotrophic nitrifying bacteria under aerobic and anaerobic conditions. Chemosphere, 234:162–170.

Yang, J. Yang, Y. Wu, W.-M. Zhao, J. & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol, 48, 13776–13784.

Yogabaanu, U. Weber, J. F. F. Convey, P. Rizman-Idid, M. & Alias, S. A. (2017). Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi. Polar Sci, 14:60–67.

Zettler, E. R. Mincer, T. J. & Amaral-Zettler, L. A. (2013). Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol, 47:7137–7146.



How to Cite

ALMEIDA, L. R. O.; OTTONI, J. R.; PASSARINI, M. R. Z. Plastics in the cold marine environment: a review of the potential for microbial biodegradation . Research, Society and Development, [S. l.], v. 10, n. 3, p. e49310313642, 2021. DOI: 10.33448/rsd-v10i3.13642. Disponível em: Acesso em: 14 apr. 2021.



Agrarian and Biological Sciences