Nutritional composition, antioxidant activity and anticancer potential of Syzygium cumini (L.) and Syzygium malaccense (L.) fruits




Syzygium; Natural antioxidant; Human embryonic kidney; Lung cancer; Nutraceuticals; Complementary therapy.


Intending to highlight new fruits with nutraceutical potential, the present work reports the nutritional and antioxidant content of Syzygium cumini (L.) Skeels (S. cumini) and Syzygium malaccense (L.) Merr. & LM Perry (S. malaccense), and evaluates the anticancer potential against CP-H460 (lung carcinoma line) and its functionality over HEK-293 (healthy embryonic kidney line), two human cells. For this, the physical-chemical characterization of the lyophilized fruits was carried out, and the content of total phenolic compounds (Folin-Ciocalteau) and the antioxidant potential (DPPH, FRAP, and ORAC) was determined. For anticancer activity, aqueous extracts were prepared and evaluated using the MTT (3-[4,5-dimethyl-triazol-2-yl]-2,5-diphenyltetrazolium) assay for periods of 20 hours. These two species are rich in dietary fibers, mainly insoluble fibers, and are sources of natural compounds and antioxidants, which possibly explain the protective potential against cancer cells. Thus, it is expected, as two source fruits, results obtained (p <0.01), mainly S. cumini in contact with CP-H460, which reduces the growth of a cell with lung carcinoma. This finding revealed that these fruits have antiproliferative activity against a lung carcinoma cell, where the highest concentration tested (2 mg/mL) was able to inhibit almost 80% of cell proliferation. Besides, when S. cumini was evaluated in HEK-293, all concentrations evaluated showed cell viability superior to the positive control (p <0.01). In conclusion, both S. cumini and S. malaccense can be used as nutraceuticals in complementary therapies given their nutritional properties.


Aguilar, A. (2011). Effects of some surfactants on the cell viability of lung cancer cell lines (pp. 1-78) Vitoria: Health Science Center, Federal University of Espirito Santo.

Ali, S. S., Kasoju, N., Luthra, A., Singh, A., Sharanabasava, H., Sahu, A., & Bora, A. U. (2008). Indian medicinal herbs as sources of antioxidants. Food Research International, 41(1), 1–15. 10.1016/j.foodres.2007.10.001.

Al-Sheraji, S. H., Isamil, A., Manap, M. Y., Mustafa, S., Yusof, R. M. & Hassan, F. A. (2011). Functional Properties and Characterization of Dietary Fiber from Mangifera pajang Kort. fruit Pulp. Journal of Agricultural and Food Chemistry, 59(8), 3980-5. 10.1021/jf103956g.

Alves, R. E., Brito, R. E., Morais, E. S., Sampaio, S. M., Pérez-Jimenez, C. G., & Saura-Calixto, F. D. (2007). Technical announcement - scientific methodology: determination of total antioxidant activity in fruits by DPPH free radical capture. Fortaleza: Embrapa.

AOAC - (Association Of Official Analytical Chemistry). (2000). Official Methods of Analysis, (17th ed.), Editorial Board, Washington.

AOAC - (Association Of Official Analytical Chemistis) (2005). Official methods of analysis, (18th ed.), Editorial Board, Gaithersburg.

Aqil, F., Gupta, A., Munagala, R., Jeyabalan, J., Kausar, H., Sharma, R., Singh, I. P., & Gupta R. C. (2012). Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (‘jamun’, the Indian Blackberry). Nutrition and Cancer, 64(3): 428–438. 10.1080/01635581.2012.657766.

Ayyanar, M., Subash-Babu, P., & Ignacimuthu, S. (2013). Syzygium cumini (L.) Skeels., a novel therapeutic agent for diabetes: Folk medicinal and pharmacological evidences. Complementary Therapies in Medicine, 21(3), 232-43. 10.1016/j.ctim.2013.03.004.

Azima, A. M. S., Noriham, A., & Manshoor, N. (2017). Phenolics, antioxidants and color properties of aqueous pigmented plant extracts: Ardisia colorata var. elliptica,

Clitoriaternatea, Garcinia mangostana and Syzygium cumini. Journal of Functional Foods, 38, 232–241.

Batista, A. G., Silva. J., Cazarin, C. B., Biasoto, A. C., Sawaya, A. C. H., Prado, M., & Maróstica Junior, M. R. (2017). Red-jambo (Syzygium malaccense): Bioactive compounds in fruits and leaves. LWT- Food Science Technnology, 284-291. 10.1016/j.lwt.2016.05.013.

Batista, A. G., Mendonça, M. C., Soares, E. S., Silva-Maia, J. K., Dionisio, A. P., Sartori, C. R., Cruz-Hofling, M. A., & Marostica Junior, M. R. (2020). Syzygium malaccense fruit supplementation protects mice brain against high-fat diet impairment and improves cognitive functions. Journal of functional foods.

Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Analytical Biochemistry, 239(1), 70-6. 10.1006/abio.1996.0292.

Bradbury, K. E., Appleby, P., & Key, T. (2014). Fruit, vegetable, and fiber intake in relation to cancer risk: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). The American Journal of Clinical Nutritrion, 1(39), 4S-8S. 10.3945/ajcn.113.071357.

Branco, I. G., Moraes, I. C. F., Argandoña, E. J. S., Madrona, G. S., dos Santos, C., Ruiz, A. L. T. G., Carvalho, J. E., & Haminiuk, C. W. I. (2016). Influence of pasteurization on antioxidant and in vitro anti-proliferative effects of jambolan (Syzygium cumini (L.) Skeels) fruit pulp. Industrial Crops and Products, 225–230. 10.1016/j.indcrop.2016.04.055.

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. LWT- Food Science and Technnology, 28(1), 25-30. 10.1016/S0023-6438(95)80008-5.

Bursal, E., & Gulçin, I. (2011). Polyphenol contents and in vitro antioxidant activities of lyophilized aqueous extract of kiwifruit (Actinidia deliciosa). Food Research International, 44(5), 1482-1489.

Chang, S. K., Alasalvar, C., & Shahidi, F. (2018). Superfruits: Phytochemicals, antioxidant efficacies, and health effects – A comprehensive review. Critical Reviews in Food Science and Nutrition, 59(10), 1580-1604. 10.1080/10408398.2017.1422111.

Das, S., & Sarma, G. (2009). Study of the hepatoprotective activity of the ethanolic extract of the pulp of Eugenia Jambolana (Jamun) in albino rats. Journal of Clinical and Diagnostic Research, 3, 1466-1474.

Deschasaux, M., Pouchieu, C., His, M., Hercberg, S., Latino-Martel, P., & Touvier, M. (2014). Dietary Total and Insoluble Fiber Intakes Are Inversely Associated with Prostate Cancer Risk. Journal of Nutrition, 144(4), 504–510. 10.3945/jn.113.189670.

Faria, A., Marques, M., & Mercadante, A. (2011). Identification of bioactive compounds from jambolão (Syzygium cumini) and antioxidant capacity evaluation in different pH conditions. Food Chemistry, 126(4), 1571-8. 10.1016/j.foodchem.2010.12.007.

Farias, D. P., Neri-Numa, I. A., Araujo, F. F., & Pastore, G. M. (2020). A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chemistry, 306. 10.1016/j.foodchem.2019.125630.

Hogan, S., Chung, H., Zhang, L., Li, J., Lee, Y., Dai, Y., & Zhou, K. (2010). Antiproliferative and antioxidant properties of anthocyanin-rich extract from açai. Food Chemistry, 118, 208–214. 10.1016/j.foodchem.2009.04.099.

Kee, C. L., Ling, L. C., Pick, L. A., Moi, C. S., & Yian, K. R. (2019). Anticancer Potential of Syzygium Species: a Review. Plant Foods for Human Nutrition, 74(1), 18-27. 10.1007/s11130-018-0704-z.

King, D. E., Egan, B. M., Woolson, R. F., Mainous. III A., Al-Solaiman, Y., & Jesri, A. (2007). Effect of a High-Fiber Diet vs a Fiber-Supplemented Diet on C-Reactive Protein Level. Archives of Internal Medicine, 167(5), 502-6. 10.1001/archinte.167.5.502.

Kishore, S. (2019). Phenological growth stages and heat unit requirement of Indian blackberry (Syzygium cumini L., Skeels). Scientia Horticulturae, 249(30), 455-460. 10.1016/j.scienta.2019.02.032.

Nazif, N. M. (2007). The Anthocyanin Components and Cytotoxic Activity of Syzygium cumini (L.) fruits growing in Egypt. Journal of Natural Products, 13(2), 135-139.

Nunes, P. C., Aquino, J. S., Rockenbach, I. I., & Stamfor, T. L. M. (2016). Physico-Chemical Characterization, Bioactive Compounds and Antioxidant Activity of Malay Apple (Syzygium malaccense (L.) Merr. & L.M. Perry). Plos One, 11(6), e0158134. 10.1371/journal.pone.0158134.

Osborne, D. R., & Voogt, P. (1978). The analysis of nutrient in foods. Academic Press, 156-158.

Pires, T. C. S. P., Dias, M. I., Barros, L., Calhelha, R. C., Alves, M. J., Oliveira, M. B., Santos-Buelga, C., & Ferreira, I. (2017). Edible flowers as sources of phenolic compounds with bioactive potential. Food Research International, 105, 580-588. 10.1016/j.foodres.2017.11.014.

Reyes-Fermin, L., Aparicio-Trejo, O., Avila-Rojas, S., Gomez-Sierra. T., Martinez-Klimova, E., & Pedraza-Chaverri, J. (2020). Natural antioxidants' effects on endoplasmic reticulum stress-related diseases. Food Chemical Toxicology, 138. 10.1016/j.fct.2020.111229.

Reynertson, K. A., Yang, H., Jiang, B., Basile, M. J., & Kennelly, E. J. (2008). Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chemistry, 109(4), 883–890. 10.1016/j.foodchem.2008.01.021.

Rochetti, G., Lucini, L., Ahmed, S., & Saber, F. R. (2020). In vitro cytotoxic activity of six Syzygium leaf extracts as related to their phenolic profiles: An untargeted UHPLC QTOF-MS approach. Food Research International, 126. 10.1016/j.foodres.2019.108715.

Rufino, M., Alves, R. E., Fernandes, F. & Brito, E. (2011). Free radical scavenging behavior of ten exotic tropical fruits extracts. Food Research International, 44(7), 2072-2075. 10.1016/j.foodres.2010.07.002.

Schiller, C. D., Kainz, A., Mynett, K., & Gescher, A. (1992). Assessment of viability of hepatocytes in suspension using the MTT assay. Toxicoly in vitro, 6(6), 575-578. 10.1016/0887-2333(92)90070-8.

Schulz, M., Seraglio, S. K. T., Brugnerotto, P., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2020). Composition and potential health effects of dark-colored underutilized Brazilian fruits – A review. Food Research International, 137. 10.1016/j.foodres.2020.109744.

Seraglio, S. K., Schuls, M., Nehring, P., Betta, F. D., Valese, A. C., Daguer, H., Gonzaga, L. V., Fett, R. & Costa, A. C. O. (2018). Nutritional and bioactive potential of Myrtaceae fruits during ripening. Food Chemistry, 239(15), 649-656. 10.1016/j.foodchem.2017.06.118.

Singh, S., Kaur, M., Sogi, D. S., & Purewal, S. S. (2019). A comparative study of phytochemicals, antioxidant potential and invitro DNA damage protection activity of different oat (Avena sativa) cultivars from India. Journal of Food Measurement and Characterization, 13, 347–356. 10.1007/s11694-018-9950-x.

Souza, V. R. de., Pereira, P. A. P., Queiroz, F., Borges, S. V., & Carneiro, J. D. S. (2012). Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food Chemistry, 134(1), 381-386. 10.1016/j.foodchem.2012.02.191.

Sunny, A., Godwin, S., Samuel, C. O., Ifeoma. M., & Jeans-Frances, A. (2020). Evaluation of the protective effects of quercetin and gallic acid against oxidative toxicity in rat’s kidney and HEK-293 cells. Toxicology Reports, 7, 955-962. 10.1016/j.toxrep.2020.07.015.

Tavares, I., Lago-vanzela, E., Rebello, E. L. P., Ramos, A. M., Gomez-Alonso, S., & Garcia-Romero, E. (2016). Comprehensive study of the phenolic composition of the edible parts of jambolan fruit (Syzygium cumini (L.) Skeels). Food Research International, 82, 1-13. 10.1016/j.foodres.2016.01.014.

Tsai, J.-C., Liu, W.-S., Tseng, Y., Lam, H., Chen, S.-Y., Fang, C.-L., Tong, T.-S. & Lai, Y.-J. (2018). Extracts of Cerbera manghas L. effectively inhibit the viability of glioblastoma cell lines and their cancer stem loids in vitro and in mouse xenograft model. Journal of Functinal Foods, 48, 293-296. 10.1016/j.jff.2018.07.017.

Vuolo, M., Batista, A. G., Biasoto, A. C., Correa, L. C., Maróstica Junior, M. R., & Liu, R. H. (2018). Red-jambo peel extract shows antiproliferative activity againts HepG2 human hepatoma cells. Food Research International, 124, 93-100. 10.1016/j.foodres.2018.08.040.

Xu, J., Liu, T., Li, Y., Liu, W., Ding, Z., Ma, H., Seeram, N.P., Mu, Y., Huang, X. & Li, L. (2019). Jamun (Eugenia jambolana Lam.) Fruit Extract Prevents Obesity by Modulating the Gut Microbiome in High-Fat-Diet-Fed Mice. Molecular Nutrition & Food Research, 63(9):e1801307. 10.1002/mnfr.201801307.

Wild, C. P., Weiderpass, E., & Stewart, B. W. (2020). World Cancer Report: Cancer Research for Cancer Prevention. Lyon, France: International Agency for Research on Cancer.,

Zhang. L., Fletcher, A. A., Cheung, V., Winston, F., & Stargell, L. A. (2008). Spn1 Regulates the Recruitment of Spt6 and the Swi/Snf Complex during Transcriptional Activation by RNA Polymerase II. Molecular and Cellular Biology, 28(4), 1393–1403. 10.1128/MCB.01733-07.

Zielinski, H., & Kozlowska, H. (2000). Antioxidant Activity and Total Phenolics in Selected Cereal Grains and Their Different Morphological Fractions. Journal of Agricultural and Food Chemistry, 48(6), 2008–2016. 10.1021/jf990619o.

Zulueta, A., Esteve, M., & Frigola, A. (2009). ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chemistry, 114(1), 310-316. 10.1016/j.foodchem.2008.09.033.




How to Cite

GIBBERT, L.; SERENO, A. B.; ANDRADE, M. T. P. de; SILVA, M. A. B. da; MIGUEL, M. D. .; MONTRUCCHIO, D. P. .; MESSIAS-REASON, I. J. de .; DANTAS, A. M.; BORGES, G. da S. C.; MIGUEL, O. G. .; KRUGER, C. C. H.; DIAS, J. de F. G. . Nutritional composition, antioxidant activity and anticancer potential of Syzygium cumini (L.) and Syzygium malaccense (L.) fruits. Research, Society and Development, [S. l.], v. 10, n. 4, p. e5210413743, 2021. DOI: 10.33448/rsd-v10i4.13743. Disponível em: Acesso em: 14 apr. 2021.



Health Sciences