Biosorption of direct scarlet red dye by cassava bagasse

Authors

DOI:

https://doi.org/10.33448/rsd-v10i4.13964

Keywords:

Cassava bagasse; Biosorption; Textile dye.

Abstract

Textile industry uses dyes in the dyeing processes, generating effluents with potential toxicity to the environment and humans, if not treated adequately. Biosorption is an alternative for removing dyes from aqueous matrices, being a low-cost and effective technique, also allowing the use of agroindustrial wastes. Therefore, this work aimed to evaluate the capacity to remove the direct scarlet red dye using cassava bagasse as a biosorbent, a waste widely generated in Brazil. The biosorbent was characterized according to its specific surface area. Initially, preliminary tests were performed to obtain the best conditions of pH, temperature, and speed of rotation. Kinetic and adsorption equilibrium tests were performed. Mathematical modeling was employed in order to understand the mechanisms involved in the adsorption of the dye. The cassava bagasse had a specific surface area of ​​3.012 m² g-1, with the presence of micropores. The batch biosorption tests obtained optimal operating conditions at pH 2, 50 °C and 90 rpm. In kinetics, removal of 84% was achieved in 300 min. In adsorption isotherms, the maximum monolayer adsorption capacity estimated by the Langmuir model was 25.1 mg g-1. In mathematical modeling, both Pseudo-first order, Pseudo-second order and Elovich models represent kinetic data, suggesting the occurrence of more than one mechanism in the process, whereas, in isotherms, the Redlich-Peterson and Toth models suggest a trend to the Freundlich model. In general, cassava bagasse proved to be an efficient adsorbent in removing the textile dye.

References

Ahmad, T., & Danish, M. (2018). Prospects of banana waste utilization in wastewater treatment: A review. Journal of Environmental Management, 206, 330-348.

Alvarado, N., Abarca, R. L., Urdaneta, J., Romero, J., Galotto, M. J., & Guarda, A. (2021). Cassava starch: structural modification for development of a bio-adsorber for aqueous pollutants. Characterization and adsorption studies on methylene blue. Polymer Bulletin, 78, 1087-1107.

Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 3039817.

Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. Journal of the American Chemical Society, 73 (1), 373-380.

Brazilian Association of Textile and Clothing Industry. (2019). Sector Profile. https://www.abit.org.br/cont/perfil-do-setor.

Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60 (2), 309-319.

Costa, J. A. S., & Paranhos, C. M. (2019). Evaluation of rice husk ash in adsorption of Remazol Red dye from aqueous media. SN Applied Sciences, 1, 397

Dotto, G. L., & McKay, G. (2020). Current scenario and challenges in adsorption for water treatment. Journal of Environmental Chemical Engineering, 8 (4), 103988.

Elovich, S. Y., & Larinov, O. G. (1962). Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions. Izvestiya Akademii Nauk. SSSR, Otdelenie Khimicheskikh Nauk, 2, 209-216.

Escaramboni, B., Núñez, E. G. F., Carvalho, A. F. A., & Neto, P. O. (2018). Ethanol biosynthesis by fast hydrolysis of cassava bagasse using fungal amylases produced in optimized conditions. Industrial Crops and Products, 112, 368-377.

FAO (Food and Agriculture Organization of the United Nations). (2019). Production quantity of cassava in Brazil. http://www.fao.org/faostat/en/#data/QC.

Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2-10.

Freitas, T. S. M., Rigueto, C. V. T., Geraldi, C. A. Q., Loss, R. A., Guedes, S. F., Aranda, D. A. G., Muchave, G. J., & Gonçalves, J. A. (2019). Biosorption of orange bagasse (Citrus sinensis L. Osbeck) in the removal of reactive blue 5G dye. Engevista, 21 (2), 256-266.

Freundlich, H. M. F. (1906). Over the Adsorption in Solution. The Journal of Physical Chemistry, 57, 385-471.

Giles, C. H., MacEwan, T. H., Nakhwa, S. N., & Smith, D. (1960). A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society, 111, 3973-3993.

Giraldo, S., Robles, I., Ramirez, A., Flórez, E., & Acelas, N. (2020). Mercury removal from wastewater using agroindustrial waste adsorbents. SN Applied Sciences, 2, 1029.

Gita, S., Hussan, A., & Choudhury, T.G. (2017). Impact of textile dyes waste on aquatic environments and its treatment. Environment Ecology, 35, 2349-2353.

Ho, Y. S., & Mckay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Process Safety and Environmental Protection, 76 (2), 183-191.

Honorio, J. F., Veit, M. T., Gonçalvez, G. C., Campos, E. A., & Fagundes-Klen, M. R. (2016). Adsorption of reactive blue BF-5G dye by soybean hulls: kinetics, equilibrium and influencing factors. Water Science & Technology, 73 (5), 1166-1174.

IUPAC. (1991). Manual on Catalyst Characterization. Pure and Applied Chemistry, 63, 1227-1246.

Kosasih, A. N., Febrianto, J., Sunarso, J., Ju, Y., Indraswati, & Ismadji, S. (2010). Sequestering of Cu(II) from aqueous solution using cassava peel (Manihot esculenta). Journal of Hazardous Materials, 180 (1-3), 366-374.

Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska VetenskapsAkademiens Handlingar, 24 (4), 1-39.

Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361-1403.

Marin, P., Borba, C. E., Módenes, A. N., Oliveira, S. P. D., Figueiredo, L. S., & Passaia, N. (2015). Avaliação do efeito da temperatura, pH e granulometria do adsorvente na adsorção do corante azul reativo 5g. Engevista, 17, 59-68.

Marques, B. S., Frantz, T. S., Cadaval Junior, T. R. S., Pinto, L. A. A., & Dotto, G. L. (2019). Adsorption of a textile dye onto piaçava fibers: kinetic, equilibrium, thermodynamics, and application in simulated effluents. Environmental Science and Pollution Research, 26, 28584-28592.

Módenes, A. N., Espinoza-Quiñones, F. R., Geraldi, C. A. Q., Manenti, D. R., Trigueros, D. E. G., Oliveira, A. P., Borba, C. E., & Kroumov, A. D. (2015). Assessment of the banana pseudostem as a low-cost biosorbent for the removal of reactive blue 5G dye. Environmental Technology, 36 (22), 2892-2902.

Moussavi, G., & Mahmoudi, M. (2009). Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials, 168, 806-812.

Munagapati, V. S., Yarramuthi, V., Kim, Y., Lee, K. M., & Kim, D. (2018). Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. Ecotoxicology and Environmental Safety, 148, 601-607.

Pandey, A., Soccol, C. R., Nigam, P., Soccol, V. T., Vandenberghe, L. P. S., & Mohan, R. (2000). Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresource Technology, 74 (1), 81-87.

Piccin, J. S., Cadaval Jr, T. R. S., Pinto, L. A. A., & Dotto, G. L. (2017). Adsorption isotherms in liquid phase: experimental, modeling, and interpretations. In: Bonilla-Petriciolet, A., Mendonza-Castillo, & A. D. I., Reynel-Ávila, H.E. (Orgs.). Adsorption processes for water treatment and purification. Cham: Springer, 19-51.

Piccin, J. S., Dotto, G. L., Vieira, M. L. G., & Pinto, L. A. A. (2011). Kinetics and mechanism of the food dye FD&C red 40 adsorption onto chitosan. Journal of Chemical & Engineering Data, 56, 3759-3765.

Piccin, J. S., Gomes, C. S., Ferris, L. A., & Gutterres, M. (2012). Kinetics and isotherms of leather dye adsorption by tannery solid waste. Chemical Engineering Journal, 183, 30-38.

Polachini, T. C., Betiol, L. F. L., Lopes-Filho, J. F., & Telis-Romero, J. (2016). Water adsorption isotherms and thermodynamic properties of cassava bagasse. Thermochimica Acta, 632, 79-85.

Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. The Journal of Physical Chemistry, 63 (6), 1024.

Rigueto, C. V. T., Fonseca, F. C. A., Zanella, B. B., Rosseto, M., Piccin, J. S., Dettmer, A., & Geraldi, C. A. Q. (2019). Adsorption study with NaOH chemically treated soybean hull for textile dye removal. Revista Ibero-Americana de Ciências Ambientais, 10 (5), 161-168.

Rigueto, C. V. T., Nazari, M. T., Rosseto, M., Massuda, L. A., Alessandretti, I., Piccin, J. S., & Dettmer, A. (2021)b. Emerging contaminants adsorption by beads from chromium (III) tanned leather waste recovered gelatin. Journal of Molecular Liquids, 330, 115638.

Rigueto, C. V. T., Nazari, M. T., Souza, C. F., Cadore, J. S., Brião, V. B., & Piccin, J. S. (2020)a. Alternative techniques for caffeine removal from wastewater: An overview of opportunities and challenges. Journal of Water Process Engineering, 35, 101231.

Rigueto, C. V. T., Piccin, J. S., Dettmer, A., Rosseto, M., Dotto, G. L., Schmitz, A. P. O., Perondi, D., Freitas, T. S. M., Loss, R. A., & Geraldi, C. A. Q. (2020)b. Water hyacinth (Eichhornia crassipes) roots, an amazon natural waste, as an alternative biosorbent to uptake a reactive textile dye from aqueous solutions. Ecological Engineering, 150, 105817.

Rigueto, C. V. T., Rosseto, M., Nazari, M. T., Ostwald, B. E. P., Alessandretti, I., Manera, C., Piccin, J. S., & Dettmer, A. (2021)a. Adsorption of diclofenac sodium by composite beads prepared from tannery wastes-derived gelatin and carbon nanotubes. Journal of Environmental Chemical Engineering, 9(1), 105030.

Sun, W., Sun., W., & Wang, Y. (2019). Biosorption of Direct Fast Scarlet 4BS from aqueous solution using the green-tide-causing marine algae Enteromorpha prolifera. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 223, 117347.

Toth, J. (1971). State equations of the solid gas interface layer. Acta Chimica Academiae Scientiarum Hungaricae, 69, 311-317.

Vargas, A. M. M., Cazetta, A. L., Kunita, M. H., Silva, T. L., & Almeida, V. C. (2011). Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chemical Engineering Journal, 168, 722-730.

Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172-184.

Zhuo, N., Lan, Y., Yang, W., Yang, Z., Li, X., Zhou, X., Liu, Y., Shen, J., & Zhang, X. (2017) Adsorption of three selected pharmaceuticals and personal care products (PPCPs) onto MIL-101(Cr)/natural polymer composite beads. Separation and Purification Technology, 177, 272-280.

Published

04/04/2021

How to Cite

ALESSANDRETTI, I.; JESUS , R. R. de .; GUEDES , S. F. .; LOSS , R. A. .; PAULA, J. M. de .; GERALDI, C. A. Q. Biosorption of direct scarlet red dye by cassava bagasse. Research, Society and Development, [S. l.], v. 10, n. 4, p. 16510413964, 2021. DOI: 10.33448/rsd-v10i4.13964. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13964. Acesso em: 5 jan. 2025.

Issue

Section

Engineerings