Milk production in silvipastoril system: Review
DOI:
https://doi.org/10.33448/rsd-v10i4.14043Keywords:
Dairy Cattle; Thermal Stress; Shadow; Productive Performance; Welfare.Abstract
Milk production in the world is growing, as it represents part of the world economy. In view of this scenario, the concern with the quantity and quality of milk and the herd has been relevant. Heat stress is the consequence of the absence of shade on rural properties, impairing the production and reproduction of animals. In this regard, silvopastoral systems have been favorable for the performance of dairy cows, since shading promotes positive effects on milk production, well-being, comfort and fertility, in addition, increasing the availability of nutrients in the soil, improving pastures. Therefore, the aim of this review was to present the benefits of shading provided by silvopastoral systems in milk production and thermal comfort of animals.
References
Améndola, L., Solorio, J. C., Ku-Vera, J. C., Améndola, M. R. D., Zarza, H., Mancera, K. F., & Galindo, F. (2019). A pilot study on the foraging behaviour of heifers in intensive silvopastoral and monoculture systems in the tropics. Animal, 13 (3),606-616. https://doi.org/10.1017/S1751731118001532
Ammer, S., Lambertz, C., & Gauly, M. (2016). Is reticular temperature a useful indicator of heat stress in dairy cattle? Journal of Dairy Science, 99(12),10067-10076. https://doi.org/10.3168/jds.2016-11282
Armstrong, D. V. (1994). Heat Stress Interaction with Shade and Cooling. Journal of Dairy Science, 77(7), 2044-2050. https://doi.org/10.3168/jds.S0022-0302(94)77149-6
Azevedo, M., Pires, M. F. A., Saturnino, H. M., Lana, Q. A. M., Sampaio, I. B. M., Monteiro, J. B. N., & Morato, L. E. (2005). Estimation of upper critical levels of the temperature-humidity index for ½, 3/4 e 7/8 lactating Holstein-Zebu dairy cows. Revista Brasileira de Zootecnia, 34(6), 2000-2008. http://dx.doi.org/10.1590/S1516-35982005000600025
Battiste, L. F. Z., Filho, A. L. S., Perda, A., & Sinisgalli, P. A. A. (2018). Soil chemical attributes in a high biodiversity silvopastoral system. Acta Agronômica, 67(4), 486-493. http://dx.doi.org/10.15446/acag.v67n4.70180
Baumgard, L. H., & Rhoads Jr, R. P. (2013). Effects of heat stress on postabsorptive metabolism and energetics. Annual Review of Animal Biosciences, 1, 311-337. https://doi:10.1146/annurev-animal-031412-103644
Beggs, D. S., Jongman, E. C., Hemsworth, P. H., & Fisher, A. D. (2019). The effects of herd size on the welfare of dairy cows in a pasture-based system using animal- and resource-based indicators. Journal of Dairy Science, 102(4), 3406-3420. https://doi.org/10.3168/jds.2018-14850
Bernabucci, U., Biffane, S., Buggiotti, L., Vitali, A., Lacetera, N., & Nardone, A. (2014). The effects of heat stress in Italian Holstein dairy cattle. Journal of Dairy Science, 97(1), 471-486. https://doi.org/10.3168/jds.2013-6611
Benavides, R. A. M., Guerrero, H. S., & Atzori, A. S. (2018). A conceptual model to describe heat stress in dairy cows from actual to questionable loops. Acta Agronômica, 67(1), 59-64. http://dx.doi.org/10.15446/acag.v67n1.60612
Broom, D. M. (2017). Components of sustainable animal production and the use of silvopastoral systems. Revista Brasileira de Zootecnia, 46(8), 683-688. https://doi.org/10.1590/s1806-92902017000800009
Bosi, C., Pezzopane, J. R. M., & Sentelhas, P. C. (2020). Silvopastoral system with Eucalyptus as a strategy for mitigating the effects of climate change on Brazilian pasturelands. Anais da Academia Brasileira de Ciências, 92(1), 20180425. http://dx.doi.org/10.1590/0001-3765202020180425
Bohmanova, J., Misztal, I., & Cole, J. B. (2007). Temperature-Humidity Indices as Indicators of Milk Production Losses due to Heat Stress. Journal of Dairy Science, 90(4), 1947-1956. https://doi.org/10.3168/jds.2006-513
Fabris, T. F., Laporta, J., Skibiel, A. L., Corra, F. N., Senn, B. D., Wohlgemuth, S. E., & Dahl, G. E. (2019). Effect of heat stress during early, late, and entire dry period on dairy cattle. Journal of Dairy Science, 102/(6), 5647-5656. https://doi.org/10.3168/jds.2018-15721
Fan, C. Y., Su, D., Tian, E., Hu, R. T., Ran, L., Yang, Y., Su, Y. J., & Cheng, JB. (2019). Milk production and composition and metabolic alterations in the mammary gland of heat-stressed lactating dairy cows. Journal of Integrative Agriculture, 18(12), 2844-2853. https://doi.org/10.1016/S2095-3119(19)62834-0
Ferreira, F., Campos, W. E., Carvalho, A. U., Pires, M. F. A., Martinez, M. L., Silva, M. V. G. B., Verneque, R. S., & Silva, P. F. (2009). Sweat rate and histological parameters of cattle submitted to heat stress. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 61(4), 763-768. https://doi.org/10.1590/S0102-09352009000400001
Gao, S. T., Guo, J., Quan, S. Y., Nan, X. M., Fernandez, M. V. S., & Baumgard, L. H., BU, D. P. (2017). The effects of heat stress on protein metabolism in lactating Holstein cows. Journal of Dairy Science, 100(6), 5040-5049. https://doi.org/10.3168/jds.2016-11913
Girma, F., & Gebremariam, B. (2019). Review on Effect of Stress on Production and Reproduction of Dairy Cattle. Journal of Scientific and Innovative Research, 8(1), 29-32.
Junior, M. A. L., Fracetto, F. J. C., Ferreira, J. S., Silva, M.B., & Fracetto, G. G. M. (2020). Legume-based silvopastoral systems drive C and N soil stocks in a subhumid tropical environment. Catena, 189,104508. https://doi.org/10.1016/j.catena.2020.104508
Moghimi-Kandelousi, M., Alamouti, A. A., Imani, M., & Zebeli, Q. (2020). A meta-analysis and meta-regression of the effects of vitamin E supplementation on serum enrichment, udder health, milk yield, and reproductive performance of transition cows. Journal of Dairy Science, 103(7), 6157–6166. https://doi.org/10.3168/jds.2019-17556
Kaufman, J. D., Saxtom, A. M., & Ríus, A. G. (2018). Short communication: Relationships among temperature-humidity index with rectal, udder surface, and vaginal temperatures in lactating dairy cows experiencing heat stress. Journal of Dairy Science, 101(7), 6424-6429.
Kumar, G., Devi, P., Sharma, N., & Somagond, Y. M. (2020). Impact of thermal stress on milk production, composition and fatty acid profile in dairy cows: A review. Journal of Entomology and Zoology Studies, 8(5), 1278-1283. https://doi.org/10.3168/jds.2017-13799
Magalhães, H. R., Faro, L. E., Cardoso, V. L., Paz, C. C. P., Cassoli, L. D., & Machado, P. F. (2006). Influência de fatores de ambiente sobre a contagem de células somáticas e sua relação com perdas na produção de leite de vacas da raça Holandesa. Revista Brasileira de Zootecnia, 35(2), 415-421. https://doi.org/10.1590/S1516-35982006000200011
McGuire, M. A., Beed, D. K., DeLorenzo, M. A., Wilcox, C. J., Huntington, G. B., Reynolds, C. K., & Collier, R. J. (1989). Effects of thermal stress and level of feed intake on portal plasma flow and net fluxes of metabolites in lactating Holstein cows. Journal of Animal Science, 67(4), 1050-1060. doi:10.2527/jas1989.6741050x
Maggiolino, A., Dahl, G. E., Bartolomeu, N., Bernabucci, U., Vitali, A., Serio, G., Cassandro, M., Centoducati, G., Santus, E., & De Palo, P. (2020). Estimation of maximum thermo-hygrometric index thresholds affecting milk production in Italian Brown Swiss cattle. Journal of Dairy Science, 103(9), 8541-8553. https://doi.org/10.3168/jds.2020-18622
Martins, C. F., Fonseca-Neto, A. M., Bessler, H. C., Dode, M. A. N., Leme, L. O., Franco, M. M., McManus, C. M., Malaquias, J. V., & Ferreira, I. C. (2020). Natural shade from integrated crop–livestock–forestry mitigates environmental heat and increases the quantity and quality of oocytes and embryos produced in vitro by Gyr dairy cows. Ciência Pecuária, 104341. https://doi.org/10.1016/j.livsci.2020.104341
Mello, A. C. T., Carnevalli, R. A., Shiratsuchi, L. S., Pedreira, B. C., Lopes, B. L., & Xavier, D. B. (2017). Improved grazing activity of dairy heifers in shaded tropical grasslands. Ciência Rural, 47(2), 20160316. https://doi.org/10.1590/0103-8478cr20160316
Melo, A. F., Moreira, J. M., Ataídes, D. S., Guimarães, R. A. M., Loiola, J. L., & Sardinha, H. C. (2016). Efeitos do estresse térmico na produção de vacas leiteiras: Revisão. Pubvet, 10(10), 721-730. DOI: 10.22256/pubvet.v10n10.721-730
Morales, A. M. T., Ceballos, M. C., Londoño, G. C., Cardona, C. A. C., Ramirez, J. F. N., & Costa, M. J. R. P. (2017). Welfare of cattle kept in intensive silvopastoral systems: A case report. Revista Brasileira de Zootecnia, 46(6), 478-488. http://dx.doi.org/10.1590/s1806-92902017000600002
Montoya, E. S., Chará, J. D., & Barahona-Rosales, R. (2017). The nutritional balance of early lactation dairy cows grazing in intensive silvopastoral systems. Ciência Animal Brasileira, 18, 40419. https://doi.org/10.1590/1089-6891v18e-40419
Murgueitio, E., Calle, Z., Uribe, F., Calle, A., & Solorio, B. (2011). Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. Forest Ecology and Management, 261(10), 1654-1663. https://doi.org/10.1016/j.foreco.2010.09.027.
Nasr, M. A. F., & Tarabany, M. S. (2017). Impact of three THI levels on somatic cell count, milk yield and composition of multiparous Holstein cows in a subtropical region. Journal of Thermal Biology, 64, 73-77. https://doi.org/10.1016/j.jtherbio.2017.01.004
Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS, Ed. UAB/NTE/UFSM.
Perissionotto, M., Moura, D. J., Cruz, V. T., Souza, S. R. L., Lima, K. A. O., & Mendes, A. S. (2009). Thermal comfort on Subtropical and Mediterranean climate analyzing some physiological data through fuzzy theory. Ciência Rural, 39(5), 1492-1498. https://doi.org/10.1590/S0103-84782009005000094
Pezzopane, J. R. M., Nicodemoa, ML. F., Cristiam, B., Garcia, A. R., & Lulu, J. (2019). Animal thermal comfort indexes in silvopastoral systems with different tree arrangements. Journal of Thermal Biology, 79, 103-111. https://doi.org/10.1016/j.jtherbio.2018.12.015
Pinheiro, F. M., & Ramachandran Nair, P. K. (2018). Silvopasture in the Caatinga biome of Brazil: A review of its ecology, management, and development opportunities. Forest Systems, 27(1), 1-16. http://doi.org/10.5424/fs/2018271-12267
Polycarpo, R. C., Bazon, G. F., Belgo, B. L. S., Polycarpo Filho, C. H. S., Leonel, F. R., & Generoso, A. R. (2012). Característica da Produção de Leite nos Sistemas Intensivo em Pastos e Silvipastoril: Revisão. Nucleus Animalium, 4(1), 71-78.
Polsky, L., & Von Keyserlingk, M. A. G. (2017). Invited review: Effects of heat stress on dairy cattle welfare. Journal of Dairy Science, 100(11), 8645-8657. https://doi.org/10.3168/jds.2017-12651
Rivera-Herrera, J. E., Molina-Botero, I., Chára-Orozco, J., Murgueitio-Restrepo, E., & Barahona-Rosales, R. (2017). Intensive silvopastoral systems with Leucaena leucocephala (Lam.) de Wit: productive alternative in the tropic in view of the climate change. Pastos y Forrajes, 40(3), 171-183. http://scielo.sld.cu/pdf/pyf/v40n3/en_pyf01317.pdf
Staples, C. R., & Thatcher, W. W. (2016). Heat Stress: Effects on Milk Production and Composition. Reference Module in Food Science, Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21237-7
Sejian, V., Bhatta, R., Gauugham, J. B., Dunshea, F. R., & Lacetera, N. (2018). Review: Adaptation of animals to heat stress. Animal, 12(2), 431-444. https://doi.org/10.1017/S1751731118001945
Schutz, K. E., Rogers, A. R., Poulouin, I. A., Cox, N. R., & Tucker, C. B. (2010). The amount of shade influences the behavior and physiology of dairy cattle. Journal of Dairy Science, 93(1), 125-133. https://doi.org/10.3168/jds.2009-2416
Tao, S., & Dahl, G. E. (2013). Invited review: Heat stress effects during late gestation on dry cows and their calves. Journal of Dairy Science, 96(7), 4079-4093. https://doi.org/10.3168/jds.2012-6278
Tao, S. H. A., Rivas, R. M. O., Marins, T. N., Chen, Y. C., Gao, J., & Bernard, J. K. (2020). Impact of heat stress on lactational performance of dairy cows. Theriogenology, 150, 437-444. https://doi.org/10.1016/j.theriogenology.2020.02.048
Testa, F., Marano, G., Ambrogi, F., Boracchi, P., Casula, A., Biganzoli, E., & Moroni, P. (2017) Study of the association of atmospheric temperature and relative humidity with bulk tank milk somatic cell count in dairy herds using Generalized additive mixed models. Research in Veterinary Science, 114, 511-517. https://doi.org/10.1016/j.rvsc.2017.09.027
Thom, E. C. (1959). The discomfort index. Weatherwise, 12(2), 57-60. https://doi.org/10.1080/00431672.1959.9926960
Xie, G., Cole, L. C., Zhao, L. D., Skrzypek, M. V., Sanders, S. R., Rhoards, M. L., Baumgards, L. H., & Rhoards, R. P. (2016). Skeletal muscle and hepatic insulin signaling is maintained in heat-stressed lactating Holstein cows. Journal of Dairy Science, 99(5), 4032-4042. https://doi.org/10.3168/jds.2015-10464
Zanin, E., Bichel, A., & Mangilli, L. G. (2016). Bem estar de vacas leiteiras em sistema silvipastoril. Pubvet 10(5), 381-387.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Larissa de Souza Reis; Letícia Ribeiro Marques; Sthéfany Noronha dos Santos; Tiago do Prado Paim; Tiago Pereira Guimarães; Thaisa Campos Marques; Karen Martins Leão
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.