The influence of recent Brazilian policy and legislation on increasing bee mortality

Authors

DOI:

https://doi.org/10.33448/rsd-v10i4.14157

Keywords:

Pesticide; Agribusiness; Apis mellifera; Pollinators.

Abstract

The decline in bee communities in recent years has been a major concern worldwide. The increase in the mortality of these pollinators is related to several factors, the main one being the intensive use of pesticides in agricultural crops. Brazil is the world leader in use of pesticides since 2008 and recent changes in legislation have facilitated the commercialization of certain pesticides whose marketing has been banned in several countries. This review addresses how current Brazilian legislation on agrochemicals has influenced the increase in bee mortality. Under the current federal government, in 2019 and 2020, 474 and 493 new pesticides were registered in the country, respectively, some of them classified as highly toxic to bees. In addition, public policies in Brazil led by certain sectors of agribusiness have also contributed to increase the number of threats and the mortality of bees, making it difficult for the beekeeping sector to act in opposition. Understanding how these policies directly affect pollinator conservation allows decision-making to help mitigate their environmental and economic impacts in Brazil. Otherwise, without effective actions to mitigate the abusive use of pesticides, the numerous studies demonstrating its direct impacts on the bee’s survival will be of no use.

Author Biographies

Aline Nunes, Universidade Federal de Santa Catarina

Possui graduação em Ciências Biológicas (Licenciatura) pelo Centro Universitário Unifacvest (2016). Mestre em Produção Vegetal na linha de pesquisa de Proteção de Plantas e Agroecologia pela Universidade do Estado de Santa Catarina (UDESC - 2019). Iniciou o doutorado em 2019 no Programa de Pós-Graduação de Biotecnologia e Biociências na Universidade Federal de Santa Catarina (UFSC), sendo bolsista da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Integrante atual do Laboratório de Morfogênese e Bioquímica Vegetal (CCA-UFSC). Tem experiência em agroecologia, educação ambiental, sustentabilidade e homeopatia vegetal.

Caroline Schmitz, Universidade Federal de Santa Catarina

Possui graduação em Ciências Biológicas pela Universidade do Vale do Rio dos Sinos (2014) e mestrado em Biologia de Fungos, Algas e Plantas pela Universidade Federal de Santa Catarina (2017). Iniciou seu doutorado em Biotecnologia e Biociências na Universidade Federal de Santa Catarina (2017). Atualmente trabalha com engenharia metabólica aplicada à cultivos microalgais. Adquiriu experiência na área de Biotecnologia, com ênfase em Recursos Naturais ao participar do projeto "Efeito da latitude na concentração e diversidade de compostos fotoprotetores de algas marinhas no Brasil".Têm experiência profissional na área da educação, tendo sido professora titular das disciplinas de Ciências, Biologia e Seminário Integrado na Escola Estadual Ensino Médio La Salle (2012-2015).

Sidnei Moura, Universidade de Caxias do Sul

Possui graduação em Química Industrial pela Universidade Federal de Santa Maria (2004), mestrado em química orgânica pela Universidade Federal de Santa Maria (2005) e doutorado em ciências farmacêuticas, toxicologia e análises toxicológicas pela Universidade de São Paulo (2009) com período na universidade Friderich-Schiller em Jena-Alemanha. Após, teve um período de pós-doutorado na Universidade de São Paulo e na Universidade Paris Sud-11 em Chatenay-Malabry - França (2009-2010). Atualmente é professor adjunto da universidade de Caxias do Sul ? RS, coordenador do laboratório de biotecnologia de produtos naturais e sintéticos. Atualmente é coordenador do programa de pós-graduação em biotecnologia, além de fazer parte como corpo permanente dos programas de pós-graduação em processos (quimicos e bioquimicos) e em saúde. Tem experiência na área de Química, com ênfase em Química Orgânica, Química Analítica e Toxicologia atuando principalmente nos seguintes temas: síntese orgânica, heterociclos, produtos naturais, neurotoxinas, medicamentos, neurotoxicidade, cromatografia liquida e gasosa, espectrometria de massas, ressonância magnética nuclear (RMN) e toxicologia.

Marcelo Maraschin, Universidade Federal de Santa Catarina

Marcelo Maraschin (Bolsista Produtividade Pesquisa 1B - CNPq). Graduado em Engenharia Agronômica (UFSC, 1986), com mestrado em Fisiologia de Plantas (UFRGS, 1988) e Doutorado em Bioquímica (UFPR/Leiden University-Leiden, NL-1998). No período 2005-2006 realizou pós-doutoramento na Universidade de Aveiro (Aveiro, Portugal - Depto de Química) na área de ressonância magnética nuclear e técnicas hifenadas (LC-NMR). Em 2012, concluiu um segundo pós-doutoramento em Bioinformática, junto ao Departamento de Informática da Escola de Engenharia da Universidade do Minho (Braga, Portugal). Em 2015, realizou um terceiro pós-doutoramento na área de Bioinformática aplicada à Metabolômica junto à Instituiçãoo portuguesa. É professor titular da Universidade Federal de Santa Catarina, coordenou o Programa de Pós-Graduação em Biotecnologia e Biociências daquela universidade no triênio 2013/2015. Atualmente, é coordenador de programas profssionais na área de Biotecnologia - CAPES, membro do comite científico do Centro Internacional de Engenharia Genética e Biotecnologia (CIEGB), supervisor do Laboratório de Morfogênese e Bioquímica Vegetal - UFSC, coordena o grupo de pesquisa em Análise Orgânica Instrumental, Bioprospecção e Metabolômica Vegetal e é pesquisador associado do grupo NANOBIOMAT - Bioactive Nanofibers for Natural Compounds Delivery. O foco de sua linha de pesquisa considera o uso de ferramentas analíticas (RMN, LC, GC, FTIR, MS, UV-vis) e técnicas de bioinformática (machine learning and data mining) na investigação do metaboloma e do potencial de espécies terrestres e marinhas como fontes de compostos de interesse à nutrição e saúde humana. É membro de grupos de pesquisas em nanotecnologia (NanoBiomat), biologia de sistemas e consultor de empresas para o desenvolvimento de produtos e processos de natureza bio(nano)tecnológica.

References

ABEMEL. (2018). Associação Brasileira dos Exportadores de Mel. Setor apícola brasileiro em números: Inteligência comercial. São Paulo. Retri-eved Mar 30, 2020, from https://brazilletsbee.com.br/INTELIG%C3%8ANCIA%20COMERCIAL%20ABEMEL%20-%20JANEIRO2018.pdf

Abreu, L. S., Bellon, S., Brandenburg, A., Ollivier, G., Lamine, C., Darolt, M. R., & Aventurier, P. (2012). Relações entre agricultura orgânica e agroecologia: desafios atuais em torno dos princípios da agroecologia. Desenvolvimento e Meio Ambiente, 26, 143-160. doi:10.5380/dma.v26i0.26865

Agrofit. (2019). Consulta de Ingrediente Ativo. Retrieved Abr 20, 2020, from http://agrofit.agricultura.gov.br/

Almeida, M. D., Cavendish, T. A., Bueno, P. C., Ervilha, I. C., Gregório, L. D. S., Kanashiro, N. B. de O., Rohlfs, D. B., & Carmo, T. F. M. do. (2017). A flexibilização da legislação brasileira de agrotóxicos e os riscos à saúde humana: análise do Projeto de Lei nº 3.200/2015. Cadernos de Saúde Pública, 33(7), 1-11. doi:10.1590/0102-311x00181016

Araújo, I. M. M. de, & Oliveira, Â. G. R. C. (2017). Agronegócio e agrotóxicos: impactos à saúde dos trabalhadores agrícolas no nordeste brasileiro. Trabalho, Educação e Saúde, 15(1), 117–129. doi:10.1590/1981-7746-sol00043

Azab, M., & Morsy, A. (2017). Comparative risks of several insecticides towards honeybee workers. Asian Research Journal of Agriculture, 7(3), 1–7. doi:10.9734/ARJA/2017/38290

Azpiazu, C., Bosch, J., Bortolotti, L., Medrzycki, P., Teper, D., Molowny-Horas, R., & Sgolastra, F. (2021). Toxicity of the insecticide sulfoxaflor alone and in combination with the fungicide fluxapyroxad in three bee species. Scientific Reports, 11, 1-9. doi:10.1038/s41598-021-86036-1

Azpiazu, C., Bosch, J., Viñuela, E., Medrzycki, P., Teper, D., & Sgolastra, F. (2019). Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. Scientific Reports, 9(1), 1-11. doi:10.1038/s41598-019-50255-4

Brazil. (2021). Ministério da Agricultura, Pecuária e Abastecimento. Registros concedidos – 2005 – 2020. Brasília. Retrieved Abr 01, 2020, from https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/agrotoxicos/informacoes-tecnicas

Brazil. (2019). Anvisa. Programa de Análise de Resíduos de Agrotóxicos em Alimentos (PARA): Relatório das amostras analisadas no período de 2017-2018. Brasília. Retrieved Abr 01, 2020, from https://www.gov.br/anvisa/pt-br/assuntos/agrotoxicos/programa-de-analise-de-residuos-em-alimentos

Bruno, R. (2017). Bancada ruralista, conservadorismo e representação de interesses no Brasil contemporâneo. In Questões agrárias, agrícolas e rurais: conjunturas e políticas públicas. Rio de Janeiro: E-Papers.

Calatayud-Vernich, P., Calatayud, F., Simó, E., Suarez-Varela, M. M., & Picó, Y. (2016). Influence of pesticide use in fruit orchards during blooming on honeybee mortality in 4 experimental apiaries. Science of The Total Environment, 541, 33–41. doi:10.1016/j.scitotenv.2015.08.131

Carneiro, F. F., Delgado, G., Augusto, L. G. S., Almeida, V. E. S., & Pessoa, V. M. (2015). Os impactos dos agrotóxicos no contexto do agrone-gócio. In A agricultura familiar e o direito humano à alimentação: conquistas e desafios. Brasília, DF: Câmara dos Deputados.

Castilhos, D., Bergamo, G. C., Gramacho, K. P., & Gonçalves, L. S. (2019). Bee colony losses in Brazil: a 5-year online survey. Apidologie, 50(3), 263–272. doi:10.1007/s13592-019-00642-7

Chakrabarti, P., Carlson, E. A., Lucas, H. M., Melathopoulos, A. P., & Sagili, R. R. (2020). Field rates of Sivanto™ (flupyradifurone) and Transform® (sulfoxaflor) increase oxidative stress and induce apoptosis in honey bees (Apis mellifera L.). PLoS ONE, 15(5), 1-15. doi:10.1371/journal.pone.0233033

Christen, V., Bachofer, S., & Fent, K. (2017). Binary mixtures of neonicotinoids show different transcriptional changes than single neonicotinoids in honeybees (Apis mellifera). Environmental Pollution, 220, 1264–1270. doi:10.1016/j.envpol.2016.10.105

CIDASC. (2019). Companhia Integrada de Desenvolvimento Agrícola de Santa Catarina. Cidasc defende restrição a agrotóxico que mata abelhas em reunião nacional. Florianópolis. Retrieved Abr 01, 2020, from http://www.cidasc.sc.gov.br/blog/2019/12/09/cidasc-defende-restricao-a-agrotoxico-que-mata-abelhas-em-reuniao-nacional/

Cook, S. C. (2019). Compound and dose-dependent effects of two neonicotinoid pesticides on honey bee (Apis mellifera) metabolic physiology. Insects, 10(1), 1-17. doi:10.3390/insects10010018

Costa, A. M., Rizzotto, M. L. F., & Lobato, L. V. C. (2018). A questão dos agrotóxicos rompe os limites da ética da preservação da saúde e da vida. Saúde Em Debate, 42(117), 346–353. doi:10.1590/0103-1104201811700

Costa, E. M., Araujo, E. L., Maia, A. V., Silva, F. E., Bezerra, C. E., & Silva, J. G. (2014). Toxicity of insecticides used in the Brazilian melon crop to the honey bee Apis mellifera under laboratory conditions. Apidologie, 45 (1), 34-44. doi:10.1007/s13592-013-0226-5

Costa, F. (2019). Agrotóxicos podem ter causado a morte de 480 milhões de abelhas no RS. Journal da Universidade UFRGS. Retrieved Abr 01, 2021, from https://www.ufrgs.br/jornal/agrotoxicos-podem-ter-causado-a-morte-de-480-milhoes-de-abelhas-no-rs/

Cousin, M., Silva-Zacarin, E., Kretzschmar, A., El Maataoui, M., Brunet, J.-L., & Belzunces, L. P. (2013). Size changes in honey bee larvae oenocytes induced by exposure to paraquat at very low concentrations. PLoS ONE, 8(5), 1-7. doi:10.1371/journal.pone.0065693

Diks, L., Viana, B., Bommarco, R., Brosi, B., Arizmendi, M., Cunningham, S. A., Galetto, L., Hill, R., Lopes, A. V., Pires, C. S. S., Taki, H., & Potts, S. G. (2016). Ten policies for pollinators. Science, 354(6315), 975-976. doi:10.1126/science.aai9226

Fantinato, E., Del Vecchio, S., Gaetan, C., & Buffa, G. (2018). The resilience of pollination interactions: importance of temporal phases. Journal of Plant Ecology, 12(1), 157–162. doi:10.1093/jpe/rty005

Federal Senate. (2019). Bill No. 4146, 2019. Brasília. Retrieved Mar 03, 2020, from https://www25.senado.leg.br/web/atividade/materias/-/materia/137828

Friedrich, K., Souza, M. M. O., & Carneiro, F. F. (2018). Dossiê Científico e Técnico contra o Projeto de Lei do Veneno (PL 6.299/2002) e a favor do Projeto de Lei que institui a Política Nacional de Redução de Agrotóxicos – PNARA. Rio de Janeiro. Retrieved Mar 05, 2020, from https://www.abrasco.org.br/site/wp-content/uploads/2018/08/DOSSIE_NOVO_26_JULHO_Final-compressed2.pdf

Giannini, T. C., Boff, S., Cordeiro, G. D., Cartolano, E. A., Jr., Veiga, A. K., Imperatriz-Fonseca, V. L., & Saraiva, A. M. (2014). Crop pollinators in Brazil: a review of reported interactions. Apidologie, 46(2), 209–223. doi:10.1007/s13592-014-0316-z

Gomes, I. N., Vieira, K. I. C., Gontijo, L. M., & Resende, H. C. (2019). Honeybee survival and flight capacity are compromised by insecticides used for controlling melon pests in Brazil. Ecotoxicology, 29(1), 97–107. doi:10.1007/s10646-019-02145-8

Govindaraj, R., Edward, Y. S. J. T., Kuttalam, S., & Mohankumar, S. (2017). Contact toxicity of synthetic pyrethroid insecticides to honey bees Apis cerana indica Fab., Apis mellifera Linnaeus and Trigona iridipennis Smith in laboratory condition. Entomon, 42, 215-220. Retrieved Mar 07, 2020, from http://entomon.in/index.php/Entomon/article/view/312

Gupta, R. C., Miller Mukherjee, I. R., Doss, R. B., Malik, J. K., & Milatovic, D. (2017). Organophosphates and carbamates. In Reproductive and Developmental Toxicology (pp. 609–631). Elsevier. doi:10.1016/B978-0-12-811410-0.00037-4

Holder, P. J., Jones, A., Tyler, C. R., & Cresswell, J. E. (2018). Fipronil pesticide as a suspect in historical mass mortalities of honey bees. Proceedings of the National Academy of Sciences, 115(51), 13033–13038. doi:10.1073/pnas.1804934115

IBAMA. (2019). Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Boletins anuais de produção, importação, exportação e vendas de agrotóxicos no Brasil. Brasil, Grandes Regiões e Unidades de Federação. Rio de Janeiro. Retrieved Mar 05, 2020, from http://ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos

IBGE. (2006). Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário. Brasil, Grandes Regiões e Unidades de Federação. Rio de Janeiro. Retrieved Mar 05, 2020, from https://biblioteca.ibge.gov.br/visualizacao/periodicos/51/agro_2006.pdf

IBGE. (2017a). Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário 2017 - resultados preliminares. Rio de Janeiro. Retrieved Abr 02, 2020, from https://censos.ibge.gov.br/agro/2017/

IBGE. (2017b). Instituto Brasileiro de Geografia e Estatística. Produção da pecuária municipal. Rio de Janeiro. Retrieved Abr 01, 2021, from https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?id=784&view=detalhes

Kim, K.-H., Kabir, E., & Jahan, S. A. (2017). Exposure to pesticides and the associated human health effects. Science of The Total Environment, 575, 525–535. doi:10.1016/j.scitotenv.2016.09.009

Kwakye, M. O., Mengistie, B., Ofosu-Anim, J., Nuer, A. T. K. & Van den Brink, P. J. (2019). Pesticide registration, distribution and use practices in Ghana. Environment, Development and Sustainability, 21, 2667-2691. doi:10.1007/s10668-018-0154-7

Landaverde-González, P., Quezada-Euán, J. J. G., Theodorou, P., Murray, T. E., Husemann, M., Ayala, R., Moo-Valle, H., Vandame, R., & Paxton, R. J. (2017). Sweat bees on hot chillies: provision of pollination services by native bees in traditional slash-and-burn agriculture in the Yucatán Peninsula of tropical Mexico. Journal of Applied Ecology, 54(6), 1814–1824. doi:10.1111/1365-2664.12860

Lee, C.-Y., Jeong, S.-M., Jung, C.-E., & Burgett, M. (2016). Acute oral toxicity of neonicotinoid insecticides to four species of honey bee, Apis florea, A. cerana, A. mellifera, and A. dorsata. Journal of Apiculture, 31(1), 51-58. doi:10.17519/apiculture.2016.04.31.1.51

Lourenço, M. S. M., & Cabral, J. E. O. (2016). Apicultura e sustentabilidade: visão dos apicultores de Sobral (CE). Revista em Agronegócio e Meio Ambiente, 9(1), 93-115. doi:10.17765/2176-9168.2016v9n1p93-115

Lundgren, J. G. (2017). Predicting both obvious and obscure effects of pesticides on bees. In Beekeeping – From Science to Practice (pp. 39–59). Springer International Publishing. doi:10.1007/978-3-319-60637-8_3

Maxim, L., & van der Sluijs, J. (2013). Seed-dressing systemic insecticides and honeybees. In Late lessons from early warnings: science, precaution, innovation. European Environment Agency. Retrieved Abr 03, 2021, from https://op.europa.eu/en/publication-detail/-/publication/abc921c2-d517-445e-a661-504eeea4b564/language-en

Meeus, I., Pisman, M., Smagghe, G., & Piot, N. (2018). Interaction effects of different drivers of wild bee decline and their influence on host–pathogen dynamics. Current Opinion in Insect Science, 26, 136–141. doi:10.1016/j.cois.2018.02.007

Mengistie, B. T. (2016). Policy-Practice Nexus: Pesticide Registration, Distribution and use in Ethiopia. SM Journal of Environmental Toxicology, 2(1), 1-13. doi:10.18174/391632

Millot, F., Decors, A., Mastain, O., Quintaine, T., Berny, P., Vey, D., Lasseur, R., & Bro, E. (2017). Field evidence of bird poisonings by imidacloprid-treated seeds: a review of incidents reported by the French SAGIR network from 1995 to 2014. Environmental Science and Pollution Research, 24(6), 5469–5485. doi:10.1007/s11356-016-8272-y

Moraes, M. D., & Oliveira, N. A. M. (2017). Produção orgânica e agricultura familiar: obstáculos e oportunidades. Revista Desenvolvimento Socioeconômico em Debate, 3(1), 19-37. doi:10.18616/rdsd.v3i1.3372

Nasrala Neto, E., Lacaz, F. A. de C., & Pignati, W. A. (2014). Health surveillance and agribusiness: the impact of pesticides on health and the environment. Danger ahead! Ciência & Saúde Coletiva, 19(12), 4709–4718. doi:10.1590/1413-812320141912.03172013

Novais, S. M. A., Nunes, C. A., Santos, N. B., D’Amico, A. R., Fernandes, G. W., Quesada, M., Braga, R. F., & Neves, A. C. (2016). Effects of a possible pollinator crisis on food crop production in Brazil. PLoS ONE, 11(11), 1-12. doi:10.1371/journal.pone.0167292.g001

Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326. doi:10.1111/j.1600-0706.2010.18644.x

Piccoli, C., Cremonese, C., Koifman, R. J., Koifman, S., & Freire, C. (2016). Pesticide exposure and thyroid function in an agricultural population in Brazil. Environmental Research, 151, 389-398. doi:10.1016/j.envres.2016.08.011

Pignati, W. A., Lima, F. A. N. S., Lara, S. S., Correa, M. L. M., Barbosa, J. R., Leão, L. H. C., & Pignatti, M. G. (2017). Spatial distribution of pesticide use in Brazil: a strategy for Health Surveillance. Ciência & Saúde Coletiva, 22(10), 3281-3293. doi:10.1590/1413-812320172210.17742017

Pires, C. S. S., Pereira, F. de M., Lopes, M. T. do R., Nocelli, R. C. F., Malaspina, O., Pettis, J. S., & Teixeira, É. W. (2016). Enfraquecimento e perda de colônias de abelhas no Brasil: há casos de CCD? Pesquisa Agropecuária Brasileira, 51(5), 422–442. doi:10.1590/S0100-204X2016000500003

Qi, S., Niu, X., Wang, D. hui, Wang, C., Zhu, L., Xue, X., Zhang, Z., & Wu, L. (2020). Flumethrin at sublethal concentrations induces stresses in adult honey bees (Apis mellifera L.). Science of The Total Environment, 700,1-12. doi:10.1016/j.scitotenv.2019.134500

Queiroz, P. R., Lima, K. C., Oliveira, T. C., Santos, M., Jacob, J. F., & Oliveira, A. M. B. M. (2019). Sistema de Informação de Agravos de Notificação e as intoxicações humanas por agrotóxicos no Brasil. Revista Brasileira de Epidemiologia, 22, 1-10. doi:10.1590/1980-549720190033

Raymann, K., Motta, E. V. S., Girard, C., Riddington, I. M., Dinser, J. A., & Moran, N. A. (2018). Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome. Applied and Environmental Microbiology, 84(13),1-13. doi:10.1128/AEM.00545-18

Riva, C., Sokolowski, M. B., Normand, J., Santos, J. S. O., & Halm-Lemeille, M.-P. (2018). Effect of oral exposure to the acaricide pirimicarb, a new varroacide candidate, on Apis mellifera feeding rate. Pest Management Science, 74(8), 1790–1797. doi:10.1002/ps.4876

Robin, D. C., & Marchand, P. A. (2018). Evolution of the biocontrol active substances in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Management Science, 75(4), 950-958. doi:10.1002/ps.5199

Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Acta Paulista de Enfermagem, 20(2), 1-2. doi:10.1590/S0103-21002007000200001

Ruiz-Toledo, J., Vandame, R., Castro-Chan, R., Penilla-Navarro, R., Gómez, J., & Sánchez, D. (2018). Organochlorine pesticides in honey and pollen samples from managed colonies of the honey bee Apis mellifera Linnaeus and the stingless bee Scaptotrigona mexicana Guérin from Southern, Mexico. Insects, 9(2), 1-18. doi:10.3390/insects9020054

Sabbag, O. J., & Nicodemo, D. (2011). Viabilidade econômica para produção de mel em propriedade familiar. Pesquisa Agropecuária Tropical, 41(1), 94-101. Retrieved Mar 19, 2020, from https://www.revistas.ufg.br/index.php/pat/article/view/10414

Santos, C. F., Otesbelgue, A., & Blochtein, B. (2018). The dilemma of agricultural pollination in Brazil: Beekeeping growth and insecticide use. PLoS ONE, 13(7), 1-13. doi:10.1371/journal.pone.0200286

SECEX/MDIC. (2020). Secretaria de Comércio Exterior. Ministério da Indústria, Comércio Exterior e Serviços. Balança Comercial Brasileira e Balança Comercial do Agronegócio: 1997 a 2019. Brasília. Retrieved Jun 15, 2020, from https://www.udop.com.br/comercio-exterior-arquivos/12/13fev20_serie_historica_balanca_comercial_resumida_mapa_1997a2019.pdf

Serra, L. S., Mendes, M. R. F., Soares, M. V. A., & Monteiro, I. P. (2016). Revolução Verde: reflexões acerca da questão dos agrotóxicos. Revista CEDS, 4, 2-25.

Sgolastra, F., Porrini, C., Maini, S., Bortolotti, L., Medrzycki, P., Mutinelli, F., & Lodesani, M. (2017). Healthy honey bees and sustainable maize production: why not? Bulletin of Insectology, 70, 156-160. Retrieved Mar 06, 2020, from https://docs.wixstatic.com/ugd/8e8ea4_de2a79351a004f0fb5fdc4e8c13c53e8.pdf

Siviter, H., Brown, M. J. F., & Leadbeater, E. (2018). Sulfoxaflor exposure reduces bumblebee reproductive success. Nature, 561(7721), 109–112. doi:10.1038/s41586-018-0430-6

Sousa, R. Á. D., & Pereira, L. A. (2019). Agronegócio e Agrotóxico: uma parceria para o (in) sucesso da produção de alimentos. Revista ORG & DEMO, 20(1), 27–44. doi:10.36311/1519-0110.2019.v20n1.03.p27

Tesovnik, T., Zorc, M., Ristanić, M., Glavinić, U., Stevanović, J., Narat, M., & Stanimirović, Z. (2020). Exposure of honey bee larvae to thia-methoxam and its interaction with Nosema ceranae infection in adult honey bees. Environmental Pollution, 256,1-10. doi:10.1016/j.envpol.2019.113443

Thompson, H., Overmyer, J., Feken, M., Ruddle, N., Vaughan, S., Scorgie, E., Bocksch, S., & Hill, M. (2019). Thiamethoxam: Long-term effects following honey bee colony-level exposure and implications for risk assessment. Science of The Total Environment, 654, 60–71. doi:10.1016/j.scitotenv.2018.11.003

Tong, L., Nieh, J. C., & Tosi, S. (2019). Combined nutritional stress and a new systemic pesticide (flupyradifurone, Sivanto®) reduce bee survival, food consumption, flight success, and thermoregulation. Chemosphere, 237, 1-9. doi:10.1016/j.chemosphere.2019.124408

Tosi, S., Costa, C., Vesco, U., Quaglia, G., & Guido, G. (2018). A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Science of The Total Environment, 615, 208–218. doi:10.1016/j.scitotenv.2017.09.226

Vanbergen, A. J. (2013). Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 11(5), 251-259. doi:10.1890/120126

Vázquez, D. E., Ilina, N., Pagano, E. A., Zavala, J. A., & Farina, W. M. (2018). Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLoS ONE, 13(10), 1-19. doi:10.1371/journal.pone.0205074

Wang, Q., Diao, Q., Dai, P., Chu, Y., Wu, Y., Zhou, T., & Cai, Q. (2017). Exploring poisonous mechanism of honeybee, Apis mellifera ligustica Spinola, caused by pyrethroids. Pesticide Biochemistry and Physiology, 135, 1–8. doi:10.1016/j.pestbp.2016.07.005

Willer, H., & Lernoud, J. (Eds.). (2019). The World of Organic Agriculture. Statistics and Emerging Trends 2019. 20 ed. Research Institute of Organic Agriculture FiBL and IFOAM Organics International, Frick and Bonn. Retrieved Abr 01, 2021, from https://ciaorganico.net/documypublic/486_2020-organic-world-2019.pdf

Woodcock, B. A., Bullock, J. M., Shore, R. F., Heard, M. S., Pereira, M. G., Redhead, J., Ridding, L., Dean, H., Sleep, D., Henrys, P., Peyton, J., Hulmes, S., Hulmes, L., Sárospataki, M., Saure, C., Edwards, M., Genersch, E., Knäbe, S., & Pywell, R. F. (2017). Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science, 356(6345), 1393–1395. doi:10.1126/science.aaa1190

Woodcock, B. A., Garratt, M. P. D., Powney, G. D., Shaw, R. F., Osborne, J. L., Soroka, J., Lindström, S. A. M., Stanley, D., Ouvrard, P., Edwards, M. E., Jauker, F., McCracken, M. E., Zou, Y., Potts, S. G., Rundlöf, M., Noriega, J. A., Greenop, A., Smith, H. G., Bommarco, R., … Pywell, R. F. (2019). Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nature Communications, 10(1), 1-10. doi:10.1038/s41467-019-09393-6

Yasuda, M., Sakamoto, Y., Goka, K., Nagamitsu, T., & Taki, H. (2017). Insecticide susceptibility in Asian honey bees (Apis cerana (Hymenoptera: Apidae)) and implications for wild honey bees in Asia. Journal of Economic Entomology, 110(2), 447–452. doi:10.1093/jee/tox032

Yao, J., Zhu, Y. C., & Adamczyk, J. (2018). Responses of honey bees to lethal and sublethal doses of formulated clothianidin alone and mixtures. Journal of Economic Entomology, 111(4), 1517-1525. doi:10.1093/jee/toy140

Wolowski, M., Agostini, K., Rech, A. R., Varassin, I. G., Maués, M., Freitas, L., Carneiro, L. T., Bueno, R. O., Consolaro, H., Carvalheiro, L., Saraiva, A. M., Silva, C. I., & Silva, C. D. (2019). Relatório temático sobre polinização, polinizadores e produção de alimentos no Brasil. Editora Cubo, São Carlos. Retrieved Abr 01, 2021, from https://www.bpbes.net.br/wp-content/uploads/2019/03/BPBES_CompletoPolinizacao-2.pdf

Downloads

Published

14/04/2021

How to Cite

NUNES, A.; SCHMITZ, C.; MOURA, S.; MARASCHIN, M. . The influence of recent Brazilian policy and legislation on increasing bee mortality. Research, Society and Development, [S. l.], v. 10, n. 4, p. e36910414157, 2021. DOI: 10.33448/rsd-v10i4.14157. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14157. Acesso em: 8 may. 2021.

Issue

Section

Review Article