Study on the use of polyanhydride as a therapeutic approach for the treatment of bone tissue injuries
DOI:
https://doi.org/10.33448/rsd-v10i4.14204Keywords:
Bone; Polyanhydride; Regeneration.Abstract
Polyanhydride (PA) is a synthetic, biodegradable polymer that has an erosion mechanism that is very useful in the application of bone tissue regeneration. This study aimed to evaluate the evolution of scientific publications related to biodegradable polyanhydrides with their application in bone tissue regeneration. Searches were carried out in the journals databases of Web of Science and Scopus through the combination of keywords, and the results reported in the databases were tabulated. It was found that the number of publications occurred in the time frame from 1993 to 2019, with the largest number of publications belonging to the United States. It was also found that pharmacology, toxicology and pharmaceuticals (18%), immunology and microbiology (13%) and chemical engineering (13%) were the most prominent areas, with 46% of publications referring to original articles and 39% review articles. The high impact of publications in this area was evidenced by the increasing number of citations, reinforcing the productivity and notoriety of the theme before researchers. It can be concluded, therefore, that this is an area of research that has been experiencing notable growth, showing its promising character.
References
Amani, H., Kazerooni, H., Hassanpoor, H., Akbarzadeh, A., & Pazoki-Toroudi, H. (2019). Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. Artificial Cells, Nanomedicine and Biotechnology, 47(1), 3524–3539. https://doi.org/10.1080/21691401.2019.1639723.
Ashter, S. A. (2016). Mechanisms of Polymer Degradation. Introduction to Bioplastics Engineering, 31–59. https://doi.org/10.1016/b978-0-323-39396-6.00003-8.
Asikainen, S., & Seppälä, J. (2020). Photo-crosslinked anhydride-modified polyester and –ethers for pH-sensitive drug release. European Journal of Pharmaceutics and Biopharmaceutics, 150(October 2019), 33–42. https://doi.org/10.1016/j.ejpb.2020.02.015
Basu, A., & Domb, A. J. (2018). Recent Advances in Polyanhydride Based Biomaterials. Advanced Materials, 30(41), 1–10. https://doi.org/10.1002/adma.201706815.
Bharadwaz, A., & Jayasuriya, A. C. (2020). Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Materials Science and Engineering C, 110(January), 110698. https://doi.org/10.1016/j.msec.2020.110698.
Braga, L. A. S., Flauzino Junior, A., González, M. E. L., & Queiroz, A. A. A. de. (2019). Membranas termossensíveis baseadas em redes poliméricas semi-interpenetrantes de Quitosana e Poli(N-isopropilacrilamida). Research, Society and Development, 8(3), e3883748. https://doi.org/10.33448/rsd-v8i3.748.
Brown, J. L., & Laurencin, C. T. (2019). 2.6.6 – Bone Tissue Engineering. Biomaterials Science: An Introduction to Materials in Medicine (Fourth Edi.). Elsevier. Retrieved from http://dx.doi.org/10.1016/B978-0-12-816137-1.00085-4.
Chesterman, J., Zhang, Z., Ortiz, O., Goyal, R., & Kohn, J. (2020). Biodegradable polymers. Principles of Tissue Engineering (50th ed.). INC. https://doi.org/10.1201/9781420041187.sec2.
Cimatu, K. L. A., Premadasa, U. I., Ambagaspitiya, T. D., Adhikari, N. M., & Jang, J. H. (2020). Evident phase separation and surface segregation of hydrophobic moieties at the copolymer surface using atomic force microscopy and SFG spectroscopy. Journal of Colloid and Interface Science, 580, 645–659. Elsevier Inc. https://doi.org/10.1016/j.jcis.2020.07.066.
Filho, E. A. dos S., Luna, C. B. B., Siqueira, D. D., Araújo, E. M., & Wellen, R. M. R. (2020). Efeito do recozimento nas propriedades mecânicas, térmicas e termomecânicas da PCL. Research, Society and Development, 9(12), e13191210764. http://dx.doi.org/10.33448/rsd-v9i12.10764.
George, A., Sanjay, M. R., Srisuk, R., Parameswaranpillai, J., & Siengchin, S. (2020). A comprehensive review on chemical properties and applications of biopolymers and their composites. International Journal of Biological Macromolecules, 154, 329–338. https://doi.org/10.1016/j.ijbiomac.2020.03.120.
Hacker, M. C., Krieghoff, J., & Mikos, A. G. (2019). Synthetic polymers. Journal of Chromatography Library (Vol. 51). http://dx.doi.org/10.1016/B978-0-12-809880-6.00033-3.
Heyder, R. S., Sunbul, F. S., Almuqbil, R. M., Fines, C. B., & da Rocha, S. R. P. (2021). Poly(anhydride-ester) gemcitabine: Synthesis and particle engineering of a high payload hydrolysable polymeric drug for cancer therapy. Journal of Controlled Release, 330(October 2020), 1178–1190. https://doi.org/10.1016/j.jconrel.2020.11.025.
Hogan, K. J., & Mikos, A. G. (2020). Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. Polymer, 211(June), 123063. https://doi.org/10.1016/j.polymer.2020.123063.
Ku, K. L., Grøndahl, L., Dao, H., Du, K., Puttick, S., Lai, P. L., Peng, H., et al. (2017). In vitro degradation study of polyanhydride copolymers / surface grafted hydroxyapatite composites for bone tissue application. Polymer Degradation and Stability, 140, 136–146. https://doi.org/10.1016/j.polymdegradstab.2017.04.021.
Leśniak-Ziółkowska, K., Śmiga-Matuszowicz, M., Blacha-Grzechnik, A., Student, S., Brzychczy-Włoch, M., Krok-Borkowicz, M., Pamuła, E., et al. (2020). Antibacterial and cytocompatible coatings based on poly(adipic anhydride) for a Ti alloy surface. Bioactive Materials, 5(3), 709–720. https://doi.org/10.1016/j.bioactmat.2020.04.020.
Liu, L., Kshirsagar, P., Christiansen, J., Gautam, S. K., Aithal, A., Gulati, M., Kumar, S., et al. (2020). Polyanhydride nanoparticles stabilize pancreatic cancer antigen MUC4β. Journal of Biomedical Materials Research - Part A, (July 2020), 893–902. https://doi.org/10.1002/jbm.a.37080.
Moskow, J., Ferrigno, B., Mistry, N., Jaiswal, D., Bulsara, K., Rudraiah, S., & Kumbar, S. G. (2019). Review: Bioengineering approach for the repair and regeneration of peripheral nerve. Bioactive Materials, 4(1), 107–113. https://doi.org/10.1016/j.bioactmat.2018.09.001.
Ogueri, K. S., Jafari, T., Escobar Ivirico, J. L., & Laurencin, C. T. (2019). Polymeric Biomaterials for Scaffold-Based Bone Regenerative Engineering. Regenerative Engineering and Translational Medicine, 5(2), 128–154. https://doi.org/10.1007/s40883-018-0072-0.
Peng, Z., Zhao, T., Zhou, Y., Li, S., Li, J., & Leblanc, R. M. (2020). Bone Tissue Engineering via Carbon-Based Nanomaterials. Advanced Healthcare Materials, 9(5), 1–30. https://doi.org/10.1002/adhm.201901495.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Método Qualitativo, Quantitativo ou Quali-Quanti. Metodologia da Pesquisa Científica, 1, 1-119.
Poetz, K. L., & Shipp, D. A. (2016). Polyanhydrides: Synthesis, Properties, and Applications. Australian Journal of Chemistry. http://dx.doi.org/10.1071/CH16144.
Ratheesh, G., Venugopal, J. R., Chinappan, A., Ezhilarasu, H., Sadiq, A., & Ramakrishna, S. (2017). 3D Fabrication of Polymeric Scaffolds for Regenerative Therapy. ACS Biomaterials Science and Engineering, 3(7), 1175–1194. https://doi.org/10.1021/acsbiomaterials.6b00370.
Santos, D. A. dos, de Guzzi Plepis, A. M., da Conceição Amaro Martins, V., Cardoso, G. B. C., Santos, A. R., Iatecola, A., Andrade, T. N., et al. (2020). Effects of the combination of low-level laser therapy and anionic polymer membranes on bone repair. Lasers in Medical Science, 35(4), 813–821. Lasers in Medical Science. https://doi.org/10.1007/s10103-019-02864-8.
Song, R., Murphy, M., Li, C., Ting, K., Soo, C., & Zheng, Z. (2018). Current development of biodegradable polymeric materials for biomedical applications. Drug Design, Development and Therapy, 12, 3117–3145. https://doi.org/10.2147/DDDT.S165440.
Trindade, J. dos S., Guimarães, V. K. F. dos S., & Matos, J. M. E. de. (2020). Métodos de Síntese e a Classificação dos Polianidridos Biodegradáveis. A Química nas Áreas Natural, Tecnológica e Sustentável (pp. 197–208). Atena Editora. https://doi.org/10.22533/at.ed.85920170918.
Wafa, E. I., Geary, S. M., Goodman, J. T., Narasimhan, B., & Salem, A. K. (2017). The effect of polyanhydride chemistry in particle-based cancer vaccines on the magnitude of the anti-tumor immune response. Acta Biomaterialia, 50, 417–427. http://dx.doi.org/10.1016/j.actbio.2017.01.005.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Jairo dos Santos Trindade; Hitalo de Jesus Bezerra da Silva; Domingos Rodrigues da Silva Filho; Marcel Leiner de Sá; Humberto Denys de Almeida Silva; Raiany Sena de Oliveira; José Milton Elias de Matos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.