Estudio sobre el uso de polianhídrido como enfoque terapéutico para el tratamiento de lesiones del tejido óseo

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i4.14204

Palabras clave:

Hueso; Polianhídrido; Regeneración.

Resumen

El polianhídrido (PA) es un polímero sintético biodegradable que tiene un mecanismo de erosión que se vuelve muy útil en la aplicación de la regeneración del tejido óseo. Este estudio tuvo como objetivo evaluar la evolución de las publicaciones científicas relacionadas con los polianhídridos biodegradables con su aplicación en la regeneración del tejido óseo. Se realizaron búsquedas en las bases de datos de las revistas Web of Science y Scopus mediante la combinación de palabras clave y se tabularon los resultados reportados en las bases de datos. Se encontró que la cantidad de publicaciones ocurrió en el período de tiempo de 1993 a 2019, siendo la mayor cantidad de publicaciones pertenecientes a Estados Unidos. También se encontró que la farmacología, toxicología y productos farmacéuticos (18%), inmunología y microbiología (13%) e ingeniería química (13%) fueron las áreas más destacadas, siendo el 46% de las publicaciones referencias a artículos originales y el 39% artículos de revisión. El alto impacto de las publicaciones en esta área se evidenció en el creciente número de citas, reforzando la productividad y notoriedad del tema ante los investigadores. Se puede concluir, por tanto, que se trata de un área de investigación que viene experimentando un notable crecimiento, mostrando su carácter prometedor.

Citas

Amani, H., Kazerooni, H., Hassanpoor, H., Akbarzadeh, A., & Pazoki-Toroudi, H. (2019). Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. Artificial Cells, Nanomedicine and Biotechnology, 47(1), 3524–3539. https://doi.org/10.1080/21691401.2019.1639723.

Ashter, S. A. (2016). Mechanisms of Polymer Degradation. Introduction to Bioplastics Engineering, 31–59. https://doi.org/10.1016/b978-0-323-39396-6.00003-8.

Asikainen, S., & Seppälä, J. (2020). Photo-crosslinked anhydride-modified polyester and –ethers for pH-sensitive drug release. European Journal of Pharmaceutics and Biopharmaceutics, 150(October 2019), 33–42. https://doi.org/10.1016/j.ejpb.2020.02.015

Basu, A., & Domb, A. J. (2018). Recent Advances in Polyanhydride Based Biomaterials. Advanced Materials, 30(41), 1–10. https://doi.org/10.1002/adma.201706815.

Bharadwaz, A., & Jayasuriya, A. C. (2020). Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Materials Science and Engineering C, 110(January), 110698. https://doi.org/10.1016/j.msec.2020.110698.

Braga, L. A. S., Flauzino Junior, A., González, M. E. L., & Queiroz, A. A. A. de. (2019). Membranas termossensíveis baseadas em redes poliméricas semi-interpenetrantes de Quitosana e Poli(N-isopropilacrilamida). Research, Society and Development, 8(3), e3883748. https://doi.org/10.33448/rsd-v8i3.748.

Brown, J. L., & Laurencin, C. T. (2019). 2.6.6 – Bone Tissue Engineering. Biomaterials Science: An Introduction to Materials in Medicine (Fourth Edi.). Elsevier. Retrieved from http://dx.doi.org/10.1016/B978-0-12-816137-1.00085-4.

Chesterman, J., Zhang, Z., Ortiz, O., Goyal, R., & Kohn, J. (2020). Biodegradable polymers. Principles of Tissue Engineering (50th ed.). INC. https://doi.org/10.1201/9781420041187.sec2.

Cimatu, K. L. A., Premadasa, U. I., Ambagaspitiya, T. D., Adhikari, N. M., & Jang, J. H. (2020). Evident phase separation and surface segregation of hydrophobic moieties at the copolymer surface using atomic force microscopy and SFG spectroscopy. Journal of Colloid and Interface Science, 580, 645–659. Elsevier Inc. https://doi.org/10.1016/j.jcis.2020.07.066.

Filho, E. A. dos S., Luna, C. B. B., Siqueira, D. D., Araújo, E. M., & Wellen, R. M. R. (2020). Efeito do recozimento nas propriedades mecânicas, térmicas e termomecânicas da PCL. Research, Society and Development, 9(12), e13191210764. http://dx.doi.org/10.33448/rsd-v9i12.10764.

George, A., Sanjay, M. R., Srisuk, R., Parameswaranpillai, J., & Siengchin, S. (2020). A comprehensive review on chemical properties and applications of biopolymers and their composites. International Journal of Biological Macromolecules, 154, 329–338. https://doi.org/10.1016/j.ijbiomac.2020.03.120.

Hacker, M. C., Krieghoff, J., & Mikos, A. G. (2019). Synthetic polymers. Journal of Chromatography Library (Vol. 51). http://dx.doi.org/10.1016/B978-0-12-809880-6.00033-3.

Heyder, R. S., Sunbul, F. S., Almuqbil, R. M., Fines, C. B., & da Rocha, S. R. P. (2021). Poly(anhydride-ester) gemcitabine: Synthesis and particle engineering of a high payload hydrolysable polymeric drug for cancer therapy. Journal of Controlled Release, 330(October 2020), 1178–1190. https://doi.org/10.1016/j.jconrel.2020.11.025.

Hogan, K. J., & Mikos, A. G. (2020). Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. Polymer, 211(June), 123063. https://doi.org/10.1016/j.polymer.2020.123063.

Ku, K. L., Grøndahl, L., Dao, H., Du, K., Puttick, S., Lai, P. L., Peng, H., et al. (2017). In vitro degradation study of polyanhydride copolymers / surface grafted hydroxyapatite composites for bone tissue application. Polymer Degradation and Stability, 140, 136–146. https://doi.org/10.1016/j.polymdegradstab.2017.04.021.

Leśniak-Ziółkowska, K., Śmiga-Matuszowicz, M., Blacha-Grzechnik, A., Student, S., Brzychczy-Włoch, M., Krok-Borkowicz, M., Pamuła, E., et al. (2020). Antibacterial and cytocompatible coatings based on poly(adipic anhydride) for a Ti alloy surface. Bioactive Materials, 5(3), 709–720. https://doi.org/10.1016/j.bioactmat.2020.04.020.

Liu, L., Kshirsagar, P., Christiansen, J., Gautam, S. K., Aithal, A., Gulati, M., Kumar, S., et al. (2020). Polyanhydride nanoparticles stabilize pancreatic cancer antigen MUC4β. Journal of Biomedical Materials Research - Part A, (July 2020), 893–902. https://doi.org/10.1002/jbm.a.37080.

Moskow, J., Ferrigno, B., Mistry, N., Jaiswal, D., Bulsara, K., Rudraiah, S., & Kumbar, S. G. (2019). Review: Bioengineering approach for the repair and regeneration of peripheral nerve. Bioactive Materials, 4(1), 107–113. https://doi.org/10.1016/j.bioactmat.2018.09.001.

Ogueri, K. S., Jafari, T., Escobar Ivirico, J. L., & Laurencin, C. T. (2019). Polymeric Biomaterials for Scaffold-Based Bone Regenerative Engineering. Regenerative Engineering and Translational Medicine, 5(2), 128–154. https://doi.org/10.1007/s40883-018-0072-0.

Peng, Z., Zhao, T., Zhou, Y., Li, S., Li, J., & Leblanc, R. M. (2020). Bone Tissue Engineering via Carbon-Based Nanomaterials. Advanced Healthcare Materials, 9(5), 1–30. https://doi.org/10.1002/adhm.201901495.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Método Qualitativo, Quantitativo ou Quali-Quanti. Metodologia da Pesquisa Científica, 1, 1-119.

Poetz, K. L., & Shipp, D. A. (2016). Polyanhydrides: Synthesis, Properties, and Applications. Australian Journal of Chemistry. http://dx.doi.org/10.1071/CH16144.

Ratheesh, G., Venugopal, J. R., Chinappan, A., Ezhilarasu, H., Sadiq, A., & Ramakrishna, S. (2017). 3D Fabrication of Polymeric Scaffolds for Regenerative Therapy. ACS Biomaterials Science and Engineering, 3(7), 1175–1194. https://doi.org/10.1021/acsbiomaterials.6b00370.

Santos, D. A. dos, de Guzzi Plepis, A. M., da Conceição Amaro Martins, V., Cardoso, G. B. C., Santos, A. R., Iatecola, A., Andrade, T. N., et al. (2020). Effects of the combination of low-level laser therapy and anionic polymer membranes on bone repair. Lasers in Medical Science, 35(4), 813–821. Lasers in Medical Science. https://doi.org/10.1007/s10103-019-02864-8.

Song, R., Murphy, M., Li, C., Ting, K., Soo, C., & Zheng, Z. (2018). Current development of biodegradable polymeric materials for biomedical applications. Drug Design, Development and Therapy, 12, 3117–3145. https://doi.org/10.2147/DDDT.S165440.

Trindade, J. dos S., Guimarães, V. K. F. dos S., & Matos, J. M. E. de. (2020). Métodos de Síntese e a Classificação dos Polianidridos Biodegradáveis. A Química nas Áreas Natural, Tecnológica e Sustentável (pp. 197–208). Atena Editora. https://doi.org/10.22533/at.ed.85920170918.

Wafa, E. I., Geary, S. M., Goodman, J. T., Narasimhan, B., & Salem, A. K. (2017). The effect of polyanhydride chemistry in particle-based cancer vaccines on the magnitude of the anti-tumor immune response. Acta Biomaterialia, 50, 417–427. http://dx.doi.org/10.1016/j.actbio.2017.01.005.

Publicado

16/04/2021

Cómo citar

TRINDADE, J. dos S. .; SILVA, H. de J. B. da .; SILVA FILHO, D. R. da; SÁ, M. L. de .; SILVA, H. D. de A. .; OLIVEIRA, R. S. de .; MATOS, J. M. E. de . Estudio sobre el uso de polianhídrido como enfoque terapéutico para el tratamiento de lesiones del tejido óseo. Research, Society and Development, [S. l.], v. 10, n. 4, p. e42610414204, 2021. DOI: 10.33448/rsd-v10i4.14204. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14204. Acesso em: 30 jun. 2024.

Número

Sección

Revisiones