Phenolic quality in grape cultivars submitted to green pruning and hormonal regulator




Vitis vinifera; Vitis vinifera; color; phytoregulators; cultural management.; Color; Phytoregulators; Cultural management.


The color and stability of anthocyanins in fruits are largely influenced by temperature, light and pH. In this sense, the present work aimed to evaluate the management of defoliation and the application of abscisic acid (S-ABA) in the phenolic quality of the cultivars Primitivo and Malbec (Vitis vinifera L.). The experiment was conducted in a commercial vineyard in Santa Catarina, Brazil, with two cultivars of vine Primitivo and Malbec (V. vinífera L.), respectively, for two consecutive cycles: 2015/2016 and 2016/2017. The experimental design was in randomized blocks, consisting of six treatments: 1) control (without treatment); 2) manual defoliation at the beginning of maturation (DIM); 3) manual defoliation fifteen days after the first defoliation (D15); 4) S-ABA 200 mg L-1 (ABA200); 5) S-ABA 400 mg L-1 (ABA400); 6) S-ABA 600 mg L-1 (ABA600), four replicates and three plants per plot. With the data obtained, the Kolmogorov-Smirnov normality test was performed at the 5% level of significance, using analysis of variance (ANOVA) and, subsequently, Principal Component Analysis (ACP) in order to analyze the relation between the analyzed parameters, using the software R. After the discussion of the results, it is concluded that the exogenous application of S-ABA provides higher levels of total flavonoids, luminosity and chromaticity in cvs grapevines. Malbec and Primitivo and that the application of S-ABA promoted defoliation with 600 mg L-1, which can be an alternative to reduce production costs. Defoliation provided an increase in color intensity and Hue angle in cv. Malbec and Primitivo, in which this factor may be related to the higher incidence of radiation in the bunches, caused by the removal of the leaves.


Abe, L. T., Mota, R. V. da, Lajolo, F. M., & Genovese, M. I. (2007). Phenolic compounds and antioxidant activity of Vitis labrusca and Vitis vinifera cultivars. Food Science and Technology, 27(2), 394–400.

Almeida, M. B., & Ono, E. O. (2017). Efeitos de diferentes níveis de desfolha sobre a fisiologia, a produção e a qualidade das uvas e dos vinhos da variedade Syrah em condições tropicais semiáridas brasileiras. Revista Semiárido De Visu, 4(3), 160–175. Portuguese)

Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.

Baiano, A., De Gianni, A., Previtali, M. A., Del Nobile, M. A., Novello, V., & de Palma, L. (2015). Effects of defoliation on quality attributes of Nero di Troia (Vitis vinifera L.) grape and wine. Food Research International, 75, 260–269.

Biniari, K., Xenaki, M., Daskalakis, I., Rusjan, D., Bouza, D., & Stavrakaki, M. (2020). Polyphenolic compounds and antioxidants of skin and berry grapes of Greek Vitis vinifera cultivars in relation to climate conditions. Food Chemistry, 307, 125518.

Bledsoe, A. M., Kliewer, W. M., & Marois, J. J. (1988). Effects of timing and severity of leaf removal on yield and fruit composition of Sauvignon blanc grapevines. American Journal of Enology and Viticulture, 39(1), 49–54.

Carreño, J., Martinez, A., Almela, L., & Fernández-López, J. A. (1995). Proposal of an index for the objective evaluation of the colour of red table grapes. Food Research International, 28(4), 373–377.

Downey, M. O., Dokoozlian, N. K., & Krstic, M. P. (2006). Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. American Journal of Enology and Viticulture, 57(3), 257–268.

Fiorillo, E., Crisci, A., De Filippis, T., Di Gennaro, S. F., Di Blasi, S., Matese, A., Primicerio, J., Vaccari, F. P., & Genesio, L. (2012). Airborne high‐resolution images for grape classification: Changes in correlation between technological and late maturity in a Sangiovese vineyard in Central Italy. Australian Journal of Grape and Wine Research, 18(1), 80–90.

Gardin, J. P. P., Schumacher, R. L., Bettoni, J. C., Petri, J. L., & Souza, E. L. de. (2012). Abscisic acid and Etefom: Influence on the maturity and quality of Cabernet Sauvignon grapes. Revista Brasileira de Fruticultura, 34(2), 321–327.

González-Neves, G., Gil, G., Guzmán, F., & Ferrer, M. (2011). Potencial polifenólico de la uva: Índices propuestos y posibles aplicaciones. Comunicata Scientiae, 2(2), 57–69.

IBGE. (2020). Instituto Brasileiro de Geografia e Estatísfica.

Iland, P. (2013). Chemical analysis of grapes and wine: Techniques and concepts. Patrick Iland Wine Promotions.

INMET. (2020). Instituto Nacional de Meteorologia [Dados meteorológicos.]. Instituto Nacional de Meteorologia.

Jeong, S. T., Goto-Yamamoto, N., Kobayashi, S., & Esaka, M. (2004). Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Science, 167(2), 247–252.

Kataoka, I., Sugiura, A., Utsunomiya, N., & Tomana, T. (1982). Accumulation in Kyoho grapes (Vitis vinifera L. x V. labruscana BAILEY). Vitis, 21, 325–332.

Koyama, R., Colombo, R. C., Silva Borges, W. F., Silvestre, J. P., Hussain, I., Shahab, M., Ahmed, S., Prudencio, S. H., Teodoro de Souza, R., & Roberto, S. R. (2019). Abscisic Acid Application Affects Color and Acceptance of the New Hybrid ‘BRS Melodia’ Seedless Grape Grown in a Subtropical Region. HortScience, 54(6), 1055–1060.

Koyama, R., de Assis, A. M., Yamamoto, L. Y., Borges, W. F., de Sá Borges, R., Prudêncio, S. H., & Roberto, S. R. (2014). Exogenous abscisic acid increases the anthocyanin concentration of berry and juice from ‘Isabel’grapes ( Vitis labrusca L.). HortScience, 49(4), 460–464.

Koyama, R., Roberto, S. R., de Souza, R. T., Borges, W. F. S., Anderson, M., Waterhouse, A. L., Cantu, D., Fidelibus, M. W., & Blanco-Ulate, B. (2018). Exogenous Abscisic Acid Promotes Anthocyanin Biosynthesis and Increased Expression of Flavonoid Synthesis Genes in Vitis vinifera × Vitis labrusca Table Grapes in a Subtropical Region. Frontiers in Plant Science, 9.

Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1).

Lees, D. H., & Francis, F. J. (1972). Standardization of pigment analyses in cranberries. HortScience.

MARIANI, L. (2012). Cambiamento climático e coltura della vite (Vol. 26). Rivista il Consenso.

Mori, K., Sugaya, S., & Gemma, H. (2005). Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Scientia Horticulturae, 105(3), 319–330.

Pastore, C., Zenoni, S., Fasoli, M., Pezzotti, M., Tornielli, G. B., & Filippetti, I. (2013). Selective defoliation affects plant growth, fruit transcriptional ripening program and flavonoid metabolism in grapevine. BMC Plant Biology, 13(1).

Pessenti, I. L., Ayub, R. A., & Botelho, R. V. (2019). Defoliation, application of S-ABA and vegetal extracts on the quality of grape and wine Malbec cultivar. Revista Brasileira de Fruticultura, 41(3).

PESSENTI, I. L., AYUB, R. A., & Botelho, R. V. (2017). Quality of phenolic compounds of cv. Primitivo as a function of the defoliation and the application of abscisic acid. 20th GiESCO International Meeting, 1.

R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

Roberto, S. R., Assis, A. M. de, Yamamoto, L. Y., Miotto, L. C. V., Koyama, R., Sato, A. J., & Borges, R. de S. (2013). Ethephon use and application timing of abscisic acid for improving color of’Rubi’table grape. Pesquisa Agropecuária Brasileira, 48(7), 797–800.

Scalbert, A., & Williamson, G. (2000). Dietary intake and bioavailability of polyphenols. The Journal of nutrition, 130(8), 2073S-2085S.

Spáčil, Z., Nováková, L., & Solich, P. (2008). Analysis of phenolic compounds by high performance liquid chromatography and ultra performance liquid chromatography. Talanta, 76(1), 189–199.

Spayd, S. E., Tarara, J. M., Mee, D. L., & Ferguson, J. C. (2002). Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. American Journal of Enology and Viticulture, 53(3), 171–182.

Teslić, N., Vujadinović, M., Ruml, M., Ricci, A., Vuković, A., Parpinello, G. P., & Versari, A. (2019). Future climatic suitability of the Emilia-Romagna (Italy) region for grape production. Regional Environmental Change, 19(2), 599–614.

Vitulo, N., Lemos, W. J. F., Calgaro, M., Confalone, M., Felis, G. E., Zapparoli, G., & Nardi, T. (2019). Bark and Grape Microbiome of Vitis vinifera: Influence of Geographic Patterns and Agronomic Management on Bacterial Diversity. Frontiers in Microbiology, 9, 3203.

Würz, D. A., Allebrandt, R., Filho, J. L. M., Bem, B. P. de, Brighenti, A. F., Outemane, M., Rufato, L., & Kretzschmar, A. A. (2018). Influência da época de desfolha no desempenho enológico da uva ‘Cabernet Sauvignon’ cultivada em região de altitude. Acta Iguazu, 7(2), 61–73.

Würz, D. A., Allebrandt, R., Filho, J. L. M., Bem, B. P. de, Brighenti, A. F., Rufato, L., & Kretzschmar, A. A. (2018). Época de desfolha e sua influência no desempenho vitícola da uva ‘Sauvignon Blanc’ em região de elevada altitude. Revista de Ciências Agroveterinárias, 17(1), 91–99.

Yamamoto, L. Y., Koyama, R., Assis, A. M. de, Borges, W. F. S., Oliveira, I. R. de, & Roberto, S. R. (2015). Color of berry and juice of “Isabel” grape treated with abscisic acid in different ripening stages. Pesquisa Agropecuária Brasileira, 50(12), 1160–1167.



How to Cite

PESSENTI, I. L.; AYUB, R. A.; MELO, H. F. .; MARTINS, W. S. .; WIECHETECK, L. H. .; BOTELHO, R. V. . Phenolic quality in grape cultivars submitted to green pruning and hormonal regulator. Research, Society and Development, [S. l.], v. 10, n. 4, p. e39310414227, 2021. DOI: 10.33448/rsd-v10i4.14227. Disponível em: Acesso em: 15 may. 2021.



Agrarian and Biological Sciences