Does foliar silicon application enhance the biomass yield of millet silage, and does it provide significant economic gains?

Authors

DOI:

https://doi.org/10.33448/rsd-v10i4.14232

Keywords:

Pennisetum glaucum; Beneficial element; Nutritional efficiency; Nutritional management.

Abstract

Millet is a grass that has been highlighted for silage production, especially for being a productive tropical plant, and undemanding concerning soil fertility. Silicon (Si) is an alternative low-cost solution to increase biomass production, and it has been noticed to be beneficial to plants, especially when there are stress conditions. So, we analyzed the effects of foliar silicon application to gas exchanges, dry biomass production, and economic efficiency. We used a completely randomized experimental design consisting of foliar application of the following five doses of Si: 0; 0.84; 1.68; 2.52; and 3.36 g L-1 of Si as potassium and sodium silicate, with five replications. We measured the plant height, leaf area, Si contents and accumulation in the plants, gas exchanges (stomatal conductance, transpiration, and photosynthesis net), dry matter production, Si uptake and transport efficiency by plants and its economic efficiency. The Si content enhanced and accumulated in all parts of millet plants, reaching values between 2.5 and 3.3 g L-1. There were linear increases of approximately 9 and 27% in height and leaf area of millet plants to 3.36 g L-1 of Si. Stomatal conductance and transpiration reached maximum values representing an increase of 44.60 and 101.30%, respectively. The concentration of 3.36 g L-1 of Si increased photosynthesis by 76% and shoot dry matter production by 15%, when compared to the control. Si application is economically viable. The operational costs of application are suppressed, reaching to about US $ 45.32 ha-1 with the application of 2.52 g L-1 of Si.

References

Bueno, A. C. S. O., Castro, G. L. S., Silva Junior, D. D., Pinheiro, H. A., Filippi, M. C. C., & Silva, G. B. (2017). Response of photosynthesis and chlorophyll a fluorescence in leaf scald-infected rice under influence of rhizobacteria and silicon fertilizer. Plant Pathology, 66(9), 1487–1495. https://doi.org/10.1111/ppa.12690

Busch, F. A., & Sage, R. F. (2017). The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong Rubisco control above the thermal optimum. New Phytologist, 213(3), 1036–1051. https://doi.org/10.1111/nph.14258

Chen, W., Yao, X., Cai, K., & Chen, J. (2011). Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research, 142(1), 67–76. https://doi.org/10.1007/s12011-010-8742-x

Costa, B. N. S., Dias, G. D. M. G., Costa, I. D. J. S., De Assis, F. A., Da Silveira, F. A., & Pasqual, M. (2016). Silício no crescimento e estabilidade genética de plantas de maracujazeiro. Acta Scientiarum - Agronomy, 38(4), 503–511. https://doi.org/10.4025/actasciagron.v38i4.30939

Couto, C. A., Flores, R. A., Neto, J. C., Peixoto, M. de M., Souza Junior, J. P., Prado, R. de M., Mesquita, M., & Damin, V. (2020). Crescimento, biomassa e qualidade fisiológica do arroz em função da aplicação foliarde silício. Brazilian Journal of Development, 6(4), 18997–19014. https://doi.org/10.34117/bjdv6n4-170

Currie, H. A., & Perry, C. C. (2007). Silica in plants: Biological, biochemical and chemical studies. Annals of Botany, 100(7), 1383–1389. https://doi.org/10.1093/aob/mcm247

Dong, Z., Li, Y., Xiao, X., Chen, Y., & Shen, X. (2018). Silicon effect on growth, nutrient uptake, and yield of peanut (Arachis hypogaea L.) under aluminum stress. Journal of Plant Nutrition, 41(15), 2001–2008. https://doi.org/10.1080/01904167.2018.1485163

Epstein, E. (2009). Silicon: its manifold roles in plants. Annals of Applied Biology, 155(2), 155–160. https://doi.org/10.1111/j.1744-7348.2009.00343.x

Flores, R. A., Arruda, E. M., Damin, V., Junior, J. P. S., Maranhão, D. D. C., Correia, M. A. R., & Prado, R. de M. (2018a). Physiological quality and dry mass production of Sorghum bicolor following silicon (Si) foliar application. Australian Journal of Crop Science, 12(4), 631–638. https://doi.org/10.21475/ajcs.18.12.04.pne967

Flores, R. A., Arruda, E. M., Souza Junior, J. P. de, de Mello Prado, R., Santos, A. C. A. dos, Aragão, A. S., Pedreira, N. G., & da Costa, C. F. (2018b). Nutrition and production of Helianthus annuus in a function of application of leaf silicon. Journal of Plant Nutrition, 42(2), 137–144. https://doi.org/10.1080/01904167.2018.1549678

Frew, A., Weston, L. A., Reynolds, O. L., & Gurr, G. M. (2018). The role of silicon in plant biology: A paradigm shift in research approach. Annals of Botany, 121(7), 1265–1273. https://doi.org/10.1093/aob/mcy009

Guerriero, G., Stokes, I., Valle, N., Hausman, J., & Exley, C. (2020). Sculptures and Elemental Imaging. Cells, 9(1066), 1–19.

Gupta, S. K., Patil, K. S., Rathore, A., Yadav, D. V., Sharma, L. D., Mungra, K. D., Patil, H. T., Gupta, S. K., Kumar, R., Chaudhary, V., Das, R. R., Kumar, A., Singh, V., Srivastava, R. K., Gupta, R., Boratkar, M., Varshney, R. K., Rai, K. N., & Yadav, O. P. (2020). Identification of heterotic groups in South-Asian-bred hybrid parents of pearl millet. Theoretical and Applied Genetics, 133(3), 873–888. https://doi.org/10.1007/s00122-019-03512-z

Haddad, C., Arkoun, M., Jamois, F., Schwarzenberg, A., Yvin, J. C., Etienne, P., & Laîné, P. (2018). Silicon promotes growth of Brassica napus L. And delays leaf senescence induced by nitrogen starvation. Frontiers in Plant Science, 9(April), 1–13. https://doi.org/10.3389/fpls.2018.00516

Hoppe, H. G., Giesenhagen, H. C., Koppe, R., Hansen, H. P., & Gocke, K. (2013). Impact of change in climate and policy from 1988 to 2007 on environmental and microbial variables at the time series station Boknis Eck, Baltic Sea. Biogeosciences, 10(7), 4529–4546. https://doi.org/10.5194/bg-10-4529-2013

Jukanti, A. K., Gowda, C. L. L., Rai, K. N., Manga, V. K., & Bhatt, R. K. (2016). Crops that feed the world 11. Pearl Millet (Pennisetum glaucum L.): an important source of food security, nutrition and health in the arid and semi-arid tropics. Food Security, 8(2), 307–329. https://doi.org/10.1007/s12571-016-0557-y

Korndörfer, G. H., Pereira, H. S., & Nolla, A. (2004). Análise de silício: solo, planta e fertilizante. UFU, Uberlândia.

Lanna, A., Mitsuzono, S., Terra, T., Pereira Vianello, R., & Carvalho, M. (2016). Physiological characterization of common bean (“Phaseolus vulgaris” L.) genotypes, water-stress induced with contrasting response towards drought. Australian Journal of Crop Science, 10(1), 1–6.

Li, Y., Hagen, G., & Guilfoyle, T. J. (1991) An auxin-responsive promoter is differentially induced by auxin gradients during tropisms. Plant Cell, 3, 1167–1175. https://doi.org/10.1105/tpc.3.11.1167

Malavolta, E. (Eurípedes). (2006). Manual de nutrição mineral de plantas. Agronomica Ceres.

Manivannan, A., & Ahn, Y. K. (2017). Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Frontiers in Plant Science, 8(August), 1–13. https://doi.org/10.3389/fpls.2017.01346

Moraes, D. H. M. de, Mesquita, M., Flores, A. M. B. R. A., Oliveira, H. F. E. de, Lima, F. S. R. de, Prado, R. de M., & Battisti, R. (2020). Combined Effects of Induced Water Deficit and Foliar Application of Silicon on the Gas Exchange of Tomatoes for Processing. Agronomy, 10(11), 1715. https://doi.org/10.3390/agronomy10111715

Motomura, H., Mita, N., & Suzuki, M. (2002). Silica accumulation in long-lived leaves of Sasa veitchii (Carrière) rehder (Poaceae-Bambusoideae). Annals of Botany, 90(1), 149–152. https://doi.org/10.1093/aob/mcf148

Noronha, J. F. (1987). Projetos agropecuários: administração financeira, orçamento e viabilidade econômica (2 th). Atlas.

Oliveira, R. L. L., Prado, R. M., Felisberto, G., & Cruz, F. J. R. (2019). Different Sources of Silicon by Foliar Spraying on the Growth and Gas Exchange in Sorghum. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-019-00092-1

Oliveira, K. S., de Mello Prado, R., & de Farias Guedes, V. H. (2020a). Leaf spraying of manganese with silicon addition is agronomically viable for corn and sorghum plants. Journal of Soil Science and Plant Nutrition, 1–9. https://doi.org/10.1007/s42729-020-00173-6

Oliveira, K. S., de Mello Prado, R., & de Farias Guedes, V. H. (2020b). Leaf Spraying of Manganese with Silicon Addition Is Agronomically Viable for Corn and Sorghum Plants. Journal of Soil Science and Plant Nutrition, 1–9. https://doi.org/10.1007/s42729-020-00173-6

Pati, S., Pal, B., Badole, S., Hazra, G. C., & Mandal, B. (2016). Effect of Silicon Fertilization on Growth, Yield, and Nutrient Uptake of Rice. Communications in Soil Science and Plant Analysis, 47(3), 284–290. https://doi.org/10.1080/00103624.2015.1122797

Peixoto, M. de M., Flores, R. A., do Couto, C. A., Pacheco, H. D. N., Prado, R. de M., Souza-Junior, J. P., Castro-Netto, J. A., & Graciano-Ribeiro, D. (2020). Silicon Application Increases Biomass Yield in Sunflower by Improving the Photosynthesizing Leaf Area. Silicon. https://doi.org/10.1007/s12633-020-00818-2

Pompeu, R. C. F. F., Andrade, I. R. A. de, Martins, E. C., & Oliveira, H. A. de S. F. G. L. R. G. T. L. S. (2013). Produtividade e custos de produção da silagem de sorgo, milheto e girassol cultivados em agricultura de sequeiro para alimentação de ovinos no Semiárido brasileiro. VIII Congresso Nordestino de Produção Anual, 5.

Prado, V. H. de F. G. R. de M., Frazão, J. J., Oliveira, K. S., & Cazetta, J. O. (2020). Foliar-Applied Silicon in Sorghum (Sorghum bicolor L.) Alleviate Zinc Deficiency. Silicon. https://doi.org/10.1007/s12633-020-00825-3

Qamar, R., Anjum, I., Atique-ur-Rehman, Safdar, M. E., Javeed, H. M. R., Rehman, A., & Ramzan, Y. (2020). Mitigating water stress on wheat through foliar application of silicon. Asian Journal of Agriculture and Biology, 8(1), 1–10. https://doi.org/10.35495/ajab.2019.04.174

Raven, J. A. (2001). Chapter 3 Silicon transport at the cell and tissue level. Studies in Plant Science, 8(C), 41–55. https://doi.org/10.1016/S0928-3420(01)80007-0

Raven, J. A. (1983). The transport and funcion of silicon in plants. Biological Reviews, 58(2), 179–207. https://doi.org/10.1111/j.1469-185x.1983.tb00385.x

Román, R. A. A., Cortez, J. W., Oliveira, J. R. G. di, & Ferreira, M. da C. (2019). Pulverização de fungicida na cultura da soja em função de ponta e volumes de aplicação. Parte 1: Avaliação de cobertura. IV Sintag – Simpósio Internacional de Tecnologia de Aplicação de Agrotoxicos, 4, 25–28.

Sahebi, M., Hanafi, M. M., Siti Nor Akmar, A., Rafii, M. Y., Azizi, P., Tengoua, F. F., Nurul Mayzaitul Azwa, J., & Shabanimofrad, M. (2015). Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research International, 2015. https://doi.org/10.1155/2015/396010

Silva, E. S., Prado, R. M., Santos, D. M. M., Cruz, F. J. R., & Campos, C. N. S. (2015). Nitrogen components, growth and gas exchange in spring wheat plants grown under interaction of silicon (Si) and nitrogen (N). Australian Journal of Crop Science, 9(9), 790–798.

Soratto, R. P., Fernandes, A. M., Pilon, C., & Souza, M. R. (2019). Phosphorus and silicon effects on growth, yield, and phosphorus forms in potato plants. Journal of Plant Nutrition, 42(3), 218–233. https://doi.org/10.1080/01904167.2018.1554072

Sousa, D. M. G. de, & Lobato, E. (2004). Cerrado: Correction of soil and fertilization. In Embrapa Cerrados (2 th).

Swiader, J. M., Chyan, Y., & Freiji, F. G. (1994) Genotypic differences in nitrate uptake and utilization efficiency in pumpkin hybrids. Journal of Plant Nutrition, 17, 1687–1699. https://doi.org/10.1080/01904169409364840

Teixeira, G. C. M., de Mello Prado, R., Oliveira, K. S., D’Amico-Damião, V., & da Silveira Sousa Junior, G. (2020). Silicon Increases Leaf Chlorophyll Content and Iron Nutritional Efficiency and Reduces Iron Deficiency in Sorghum Plants. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-020-00214-0

Teixeira, G. C. M., Mello Prado, R., Rocha, A. M. S., Santos, L. C. N., Santos Sarah, M. M., Gratão, P. L., & Fernandes, C. (2020). Silicon in pre-sprouted sugarcane seedlings mitigates the effects of water deficit after transplanting. Journal of Soil Science and Plant Nutrition, 1–11. https://doi.org/10.1007/s42729-019-00170-4

Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (Eds.). (2017). Manual de métodos de análise de solo (3 th). Embrapa.

Xie, Z., Song, F., Xu, H., Shao, H., & Song, R. (2014). Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil. Scientific World Journal, 2014. https://doi.org/10.1155/2014/718716

Zanetti, L. V., Milanez, C. R. D., Gama, V. N., Aguilar, M. A. G., Souza, C. A. S., Campostrini, E., Ferraz, T. M., & Figueiredo, F. A. M. M. A. (2016). Leaf application of silicon in young cacao plants subjected to water deficit. Pesquisa Agropecuária Brasileira, 51(3), 215–223.

Zargar, S. M., Mahajan, R., Bhat, J. A., Nazir, M., & Deshmukh, R. (2019). Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech, 9(3), 0. https://doi.org/10.1007/s13205-019-1613-z

Downloads

Published

12/04/2021

How to Cite

FLORES, R. A. .; PESSOA DE SOUSA, M. A. .; BUENO, A. M. .; ANDRADE, A. F. de .; SOUZA JUNIOR, J. P. de .; ABDALA, K. de O. .; PRADO, R. de M. .; SANTOS, G. G. .; MESQUITA, M. Does foliar silicon application enhance the biomass yield of millet silage, and does it provide significant economic gains?. Research, Society and Development, [S. l.], v. 10, n. 4, p. e41610414232, 2021. DOI: 10.33448/rsd-v10i4.14232. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14232. Acesso em: 22 dec. 2024.

Issue

Section

Agrarian and Biological Sciences