Monitoring articles on the use of nanocomposites with polyurethane matrix applied to tissue engineering for bone repair
DOI:
https://doi.org/10.33448/rsd-v10i4.14245Keywords:
Nanocomposite; Polyurethane; Bone tissue.Abstract
Nanocomposites with polyurethane matrix are materials with interesting properties for tissue engineering and can be used in the manufacture of scaffolds for bone regeneration. The objective of this research was to evaluate the evolution of scientific publications related to polyurethane matrix nanocomposites applied to bone tissue regeneration. Searches were conducted in the databases of Web of Science and Scopus, using a combination of keywords, and the results were tabulated and analyzed. The first documents date from 2009. China holds the largest number of publications, followed by Malaysia and Vietnam. The main research areas are Engineering, Materials Science and Chemical Engineering. An increasing appreciation of the theme was noticed, with an increase in the production and impact of these publications. It can be considered that the question raised has great relevance because it is a promising field of study that promises to bring important advances to bone tissue engineering.
References
Akhan, S., Oktay, B., Özdemir, O. K., Madakbaş, S., & Apohan, N. K. (2020). Polyurethane graphene nanocomposites with self-healing properties by azide-alkyne click reaction. Materials Chemistry and Physics, 254, 123315. https://doi.org/10.1016/j.matchemphys.2020.123315
Asadi, N., Alizadeh, E., Salehi, R., Khalandi, B., Davaran, S., & Akbarzadeh, A. (2017). Nanocomposite hydrogels for cartilage tissue engineering: a review. Artificial Cells, Nanomedicine and Biotechnology, 46(3), 465–471. https://doi.org/10.1080/21691401.2017.1345924
Bharadwaz, A., & Jayasuriya, A. C. (2020). Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Materials Science and Engineering C, 110(January), 110698. https://doi.org/10.1016/j.msec.2020.110698
Boissard, C. I. R., Bourban, P.-E., Tami, A. E., Alini, M., & Eglin, D. (2009). Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Acta Biomaterialia, 5(9), 3316–3327. http://dx.doi.org/10.1016/j.actbio.2009.05.001
Carmo, K. M. do, Silva, M. C. da, & Morelli, C. L. (2020). Reaproveitamento de resíduo de espuma rígida de poliuretano em uma matriz termoplástica de poliuretano. Research, Society and Development, 9(3), e127932695. http://dx.doi.org/10.33448/rsd-v9i3.2695
Castro-Silva, I. I., Araújo, L. K., Souza, F. F. P. de, Ponte, J. S., Sousa, E. M. de, Jiménez, H. G. Q., Ferreira, F. V., et al. (2021). Pesquisa odontológica brasileira em regeneração óssea guiada : um estudo bibliométrico de quatro décadas Brazilian dental research in guided bone regeneration : a bibliometric study of four decades Investigación dental brasileña em regeneración ósea guiad. Research, Society and Development, 10(2), e25510212504. http://dx.doi.org/10.33448/rsd-v10i2.12504
Castro-Silva, I. I., Ferreira, F. V., & Maciel, J. A. C. (2021). Pesquisas em Biotecnologia no Brasil: Uma correlação espacial entre índice-H e desenvolvimento social. Research, Society and Development, 10(1), e29910111807. http://dx.doi.org/10.33448/rsd-v10i1.11807
Dai, Z., Jiang, P., Lou, W., Zhang, P., Bao, Y., Gao, X., Xia, J., et al. (2020). Preparation of degradable vegetable oil-based waterborne polyurethane with tunable mechanical and thermal properties. European Polymer Journal, 139(September), 109994. https://doi.org/10.1016/j.eurpolymj.2020.109994
Das, A., & Mahanwar, P. (2020). A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research, 3(3), 93–101. https://doi.org/10.1016/j.aiepr.2020.07.002
Filho, E. A. dos S., Luna, C. B. B., Siqueira, D. D., Araújo, E. M., & Wellen, R. M. R. (2020). Efeito do recozimento nas propriedades mecânicas, térmicas e termomecânicas da PCL. Research, Society and Development, 9(12), e13191210764. http://dx.doi.org/10.33448/rsd-v9i12.10764
Francolini, I., Silvestro, I., Lisio, V. Di, Martinelli, A., & Piozzi, A. (2019). Synthesis, characterization, and bacterial fouling-resistance properties of polyethylene glycol-grafted polyurethane elastomers. International Journal of Molecular Sciences, 20(4). https://doi:10.3390/ijms20041001
Gajbhiye, K. R., Chaudhari, B. P., Pokharkar, V. B., Pawar, A., & Gajbhiye, V. (2020). Stimuli-responsive biodegradable polyurethane nano-constructs as a potential triggered drug delivery vehicle for cancer therapy. International Journal of Pharmaceutics, 588(July), 119781. https://doi.org/10.1016/j.ijpharm.2020.119781
Gil, A. C. (2002). Como elaborar projetos de pesquisa. ATLAS, 93(3), 529–536.
Jaganathan, S. K., Mani, P. M., Ayyar, M., & Rathanasamy, R. (2019). Biomimetic electrospun polyurethane matrix composites with tailor made properties for bone tissue engineering scaffolds. Polymer Testing, 78(June), 105955. https://doi.org/10.1016/j.polymertesting.2019.105955
Javaid, M. A., Zia, K. M., Iqbal, A., Ahmad, S., Akram, N., Liu, X., Nawaz, H., et al. (2020). Utilization of waxy corn starch as an efficient chain extender for the preparation of polyurethane elastomers. International Journal of Biological Macromolecules, 148, 415–423. https://doi.org/10.1016/j.ijbiomac.2020.01.011
Kim, H.-J., Kang, M.-S., Knowles, J. C., & Gong, M.-S. (2014). Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties. Journal of Biomaterials Applications, 29(3), 454–464. https://doi.org/10.1177/0885328214533737
Król, P., Uram, Ł., Król, B., Pielichowska, K., & Walczak, M. (2018). Study of chemical, physico-mechanical and biological properties of 4,4′-methylenebis(cyclohexyl isocyanate)-based polyurethane films. Materials Science & Engineering C, 93(August), 483–494. https://doi.org/10.1016/j.msec.2018.07.082
Lee, S. J., Won, J.-E., Han, C., Yin, X. Y., Kim, H. K., Nah, H., Kwon, I. K., et al. (2019). Development of a three-dimensionally printed scaffold grafted with bone forming peptide-1 for enhanced bone regeneration with in vitro and in vivo evaluations. Journal of Colloid and Interface Science, 539, 468–480. https://doi.org/10.1016/j.jcis.2018.12.097
Lowinger, M. B., Barrett, S. E., Zhang, F., & Williams III, R. O. (2018). Sustained release drug delivery applications of polyurethanes. Pharmaceutics, 10(2), 1–19. https://doi:10.3390/pharmaceutics10020055
Marmor, M. T., Matz, J., McClellan, R. T., Medam, R., & Miclau, T. (2021). Use of Osteobiologics for Fracture Management: The When, What, and How. Injury, (xxxx). https://doi.org/10.1016/j.injury.2021.01.030
Marzec, M., Kucińska-Lipka, J., Kalaszczyńska, I., & Janik, H. (2017). Development of polyurethanes for bone repair. Materials Science and Engineering C, 80, 736–747. http://dx.doi.org/10.1016/j.msec.2017.07.047
Ouyang, L., Cao, J., Dai, Q., & Qiu, D. (2021). New insight of immuno-engineering in osteoimmunomodulation for bone regeneration. Regenerative Therapy, 18, 24–29. https://doi.org/10.1016/j.reth.2021.03.003
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Medologia da Pesquisa Científica. Metodologia da Pesquisa Científica.
Salgado, C., Arrieta, M. P., Sessini, V., Peponi, L., López, D., & Fernández-García, M. (2020). Functional properties of photo-crosslinkable biodegradable polyurethane nanocomposites. Polymer Degradation and Stability, 178. https://doi.org/10.1016/j.polymdegradstab.2020.109204
Saska, S., Pigossi, S. C., Oliveira, G. J. P. L., Teixeira, L. N., Capela, M. V., Gonçalves, A., De Oliveira, P. T., et al. (2018). Biopolymer-based membranes associated with osteogenic growth peptide for guided bone regeneration. Biomedical Materials (Bristol), 13(3). https://doi.org/10.1088/1748-605X/aaaa2d
Singh, A., Banerjee, S. L., Dhiman, V., Bhadada, S. K., Sarkar, P., Khamrai, M., Kumari, K., et al. (2020). Fabrication of calcium hydroxyapatite incorporated polyurethane-graphene oxide nanocomposite porous scaffolds from poly (ethylene terephthalate) waste: A green route toward bone tissue engineering. Polymer, 195(November 2019), 122436. https://doi.org/10.1016/j.polymer.2020.122436
Thangavelu, S. A. G., Mukherjee, M., Layana, K., Dinesh Kumar, C., Sulthana, Y. R., Rohith Kumar, R., Ananthan, A., et al. (2020). Biodegradable polyurethanes foam and foam fullerenes nanocomposite strips by one-shot moulding: Physicochemical and mechanical properties. Materials Science in Semiconductor Processing, 112(February), 105018. https://doi.org/10.1016/j.mssp.2020.105018
Uscátegui, Y. L., Díaz, L. E., Gómez-Tejedor, J. A., Vallés-Lluch, A., Vilariño-Feltrer, G., Serrano, M. A., & Valero, M. F. (2019). Candidate polyurethanes based on castor oil (ricinus communis), with polycaprolactone diol and chitosan additions, for use in biomedical applications. Molecules, 24(2). https://doi:10.3390/molecules24020237
Venkatesan, J., & Kim, S. K. (2014). Nano-hydroxyapatite composite biomaterials for bone tissue engineering - A review. Journal of Biomedical Nanotechnology, 10(10), 3124–3140. https://doi:10.1166/jbn.2014.1893
Xie, W., Ouyang, R., Wang, H., & Zhou, C. (2020). Construction and Biocompatibility of Three-Dimensional Composite Polyurethane Scaffolds in Liquid Crystal State. ACS Biomaterials Science and Engineering, 6(4), 2312–2322. https://dx.doi.org/10.1021/acsbiomaterials.9b01838
Zhao, W. J., Guan, J. J., Liu, G. E., Tian, Y., & Li, L. (2020). Annual review of Chinese Journal of Traumatology 2019. Chinese Journal of Traumatology - English Edition, 23(1), 1–4. https://doi.org/10.1016/j.cjtee.2020.01.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Hitalo de Jesus Bezerra da Silva; Jairo dos Santos Trindade; Domingos Rodrigues da Silva Filho; Marcel Leiner de Sá; Humberto Denys de Almeida Silva; Raiany Sena de Oliveira; José Milton Elias de Matos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.