Artículos de seguimiento sobre el uso de nanocompuestos con matriz de poliuretano aplicados a la ingeniería tisular para la reparación ósea
DOI:
https://doi.org/10.33448/rsd-v10i4.14245Palabras clave:
Nanocompuesto; Poliuretano; Tejido óseo.Resumen
Los nanocompuestos con matriz de poliuretano son materiales con interesantes propiedades para la ingeniería de tejidos y pueden utilizarse en la fabricación de andamios para la regeneración ósea. El objetivo de esta investigación fue evaluar la evolución de las publicaciones científicas relacionadas con los nanocompuestos de matriz de poliuretano aplicados a la regeneración de tejido óseo. Las búsquedas se realizaron en las bases de datos de las revistas Web of Science y Scopus, utilizando una combinación de palabras clave, y los resultados reportados fueron tabulados y analizados. Los primeros documentos se encontraron hasta la fecha de 2009. China tiene el mayor número de publicaciones, seguida de Malasia y Vietnam. Las principales áreas de investigación son la Ingeniería, la Ciencia de los Materiales y la Ingeniería Química. Hubo una creciente apreciación del tema, con un aumento en la producción y el impacto de estas publicaciones. Se puede considerar que la cuestión planteada tiene gran relevancia porque es un campo de estudio prometedor que promete aportar importantes avances a la ingeniería de tejidos óseos.
Citas
Akhan, S., Oktay, B., Özdemir, O. K., Madakbaş, S., & Apohan, N. K. (2020). Polyurethane graphene nanocomposites with self-healing properties by azide-alkyne click reaction. Materials Chemistry and Physics, 254, 123315. https://doi.org/10.1016/j.matchemphys.2020.123315
Asadi, N., Alizadeh, E., Salehi, R., Khalandi, B., Davaran, S., & Akbarzadeh, A. (2017). Nanocomposite hydrogels for cartilage tissue engineering: a review. Artificial Cells, Nanomedicine and Biotechnology, 46(3), 465–471. https://doi.org/10.1080/21691401.2017.1345924
Bharadwaz, A., & Jayasuriya, A. C. (2020). Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Materials Science and Engineering C, 110(January), 110698. https://doi.org/10.1016/j.msec.2020.110698
Boissard, C. I. R., Bourban, P.-E., Tami, A. E., Alini, M., & Eglin, D. (2009). Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Acta Biomaterialia, 5(9), 3316–3327. http://dx.doi.org/10.1016/j.actbio.2009.05.001
Carmo, K. M. do, Silva, M. C. da, & Morelli, C. L. (2020). Reaproveitamento de resíduo de espuma rígida de poliuretano em uma matriz termoplástica de poliuretano. Research, Society and Development, 9(3), e127932695. http://dx.doi.org/10.33448/rsd-v9i3.2695
Castro-Silva, I. I., Araújo, L. K., Souza, F. F. P. de, Ponte, J. S., Sousa, E. M. de, Jiménez, H. G. Q., Ferreira, F. V., et al. (2021). Pesquisa odontológica brasileira em regeneração óssea guiada : um estudo bibliométrico de quatro décadas Brazilian dental research in guided bone regeneration : a bibliometric study of four decades Investigación dental brasileña em regeneración ósea guiad. Research, Society and Development, 10(2), e25510212504. http://dx.doi.org/10.33448/rsd-v10i2.12504
Castro-Silva, I. I., Ferreira, F. V., & Maciel, J. A. C. (2021). Pesquisas em Biotecnologia no Brasil: Uma correlação espacial entre índice-H e desenvolvimento social. Research, Society and Development, 10(1), e29910111807. http://dx.doi.org/10.33448/rsd-v10i1.11807
Dai, Z., Jiang, P., Lou, W., Zhang, P., Bao, Y., Gao, X., Xia, J., et al. (2020). Preparation of degradable vegetable oil-based waterborne polyurethane with tunable mechanical and thermal properties. European Polymer Journal, 139(September), 109994. https://doi.org/10.1016/j.eurpolymj.2020.109994
Das, A., & Mahanwar, P. (2020). A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research, 3(3), 93–101. https://doi.org/10.1016/j.aiepr.2020.07.002
Filho, E. A. dos S., Luna, C. B. B., Siqueira, D. D., Araújo, E. M., & Wellen, R. M. R. (2020). Efeito do recozimento nas propriedades mecânicas, térmicas e termomecânicas da PCL. Research, Society and Development, 9(12), e13191210764. http://dx.doi.org/10.33448/rsd-v9i12.10764
Francolini, I., Silvestro, I., Lisio, V. Di, Martinelli, A., & Piozzi, A. (2019). Synthesis, characterization, and bacterial fouling-resistance properties of polyethylene glycol-grafted polyurethane elastomers. International Journal of Molecular Sciences, 20(4). https://doi:10.3390/ijms20041001
Gajbhiye, K. R., Chaudhari, B. P., Pokharkar, V. B., Pawar, A., & Gajbhiye, V. (2020). Stimuli-responsive biodegradable polyurethane nano-constructs as a potential triggered drug delivery vehicle for cancer therapy. International Journal of Pharmaceutics, 588(July), 119781. https://doi.org/10.1016/j.ijpharm.2020.119781
Gil, A. C. (2002). Como elaborar projetos de pesquisa. ATLAS, 93(3), 529–536.
Jaganathan, S. K., Mani, P. M., Ayyar, M., & Rathanasamy, R. (2019). Biomimetic electrospun polyurethane matrix composites with tailor made properties for bone tissue engineering scaffolds. Polymer Testing, 78(June), 105955. https://doi.org/10.1016/j.polymertesting.2019.105955
Javaid, M. A., Zia, K. M., Iqbal, A., Ahmad, S., Akram, N., Liu, X., Nawaz, H., et al. (2020). Utilization of waxy corn starch as an efficient chain extender for the preparation of polyurethane elastomers. International Journal of Biological Macromolecules, 148, 415–423. https://doi.org/10.1016/j.ijbiomac.2020.01.011
Kim, H.-J., Kang, M.-S., Knowles, J. C., & Gong, M.-S. (2014). Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties. Journal of Biomaterials Applications, 29(3), 454–464. https://doi.org/10.1177/0885328214533737
Król, P., Uram, Ł., Król, B., Pielichowska, K., & Walczak, M. (2018). Study of chemical, physico-mechanical and biological properties of 4,4′-methylenebis(cyclohexyl isocyanate)-based polyurethane films. Materials Science & Engineering C, 93(August), 483–494. https://doi.org/10.1016/j.msec.2018.07.082
Lee, S. J., Won, J.-E., Han, C., Yin, X. Y., Kim, H. K., Nah, H., Kwon, I. K., et al. (2019). Development of a three-dimensionally printed scaffold grafted with bone forming peptide-1 for enhanced bone regeneration with in vitro and in vivo evaluations. Journal of Colloid and Interface Science, 539, 468–480. https://doi.org/10.1016/j.jcis.2018.12.097
Lowinger, M. B., Barrett, S. E., Zhang, F., & Williams III, R. O. (2018). Sustained release drug delivery applications of polyurethanes. Pharmaceutics, 10(2), 1–19. https://doi:10.3390/pharmaceutics10020055
Marmor, M. T., Matz, J., McClellan, R. T., Medam, R., & Miclau, T. (2021). Use of Osteobiologics for Fracture Management: The When, What, and How. Injury, (xxxx). https://doi.org/10.1016/j.injury.2021.01.030
Marzec, M., Kucińska-Lipka, J., Kalaszczyńska, I., & Janik, H. (2017). Development of polyurethanes for bone repair. Materials Science and Engineering C, 80, 736–747. http://dx.doi.org/10.1016/j.msec.2017.07.047
Ouyang, L., Cao, J., Dai, Q., & Qiu, D. (2021). New insight of immuno-engineering in osteoimmunomodulation for bone regeneration. Regenerative Therapy, 18, 24–29. https://doi.org/10.1016/j.reth.2021.03.003
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Medologia da Pesquisa Científica. Metodologia da Pesquisa Científica.
Salgado, C., Arrieta, M. P., Sessini, V., Peponi, L., López, D., & Fernández-García, M. (2020). Functional properties of photo-crosslinkable biodegradable polyurethane nanocomposites. Polymer Degradation and Stability, 178. https://doi.org/10.1016/j.polymdegradstab.2020.109204
Saska, S., Pigossi, S. C., Oliveira, G. J. P. L., Teixeira, L. N., Capela, M. V., Gonçalves, A., De Oliveira, P. T., et al. (2018). Biopolymer-based membranes associated with osteogenic growth peptide for guided bone regeneration. Biomedical Materials (Bristol), 13(3). https://doi.org/10.1088/1748-605X/aaaa2d
Singh, A., Banerjee, S. L., Dhiman, V., Bhadada, S. K., Sarkar, P., Khamrai, M., Kumari, K., et al. (2020). Fabrication of calcium hydroxyapatite incorporated polyurethane-graphene oxide nanocomposite porous scaffolds from poly (ethylene terephthalate) waste: A green route toward bone tissue engineering. Polymer, 195(November 2019), 122436. https://doi.org/10.1016/j.polymer.2020.122436
Thangavelu, S. A. G., Mukherjee, M., Layana, K., Dinesh Kumar, C., Sulthana, Y. R., Rohith Kumar, R., Ananthan, A., et al. (2020). Biodegradable polyurethanes foam and foam fullerenes nanocomposite strips by one-shot moulding: Physicochemical and mechanical properties. Materials Science in Semiconductor Processing, 112(February), 105018. https://doi.org/10.1016/j.mssp.2020.105018
Uscátegui, Y. L., Díaz, L. E., Gómez-Tejedor, J. A., Vallés-Lluch, A., Vilariño-Feltrer, G., Serrano, M. A., & Valero, M. F. (2019). Candidate polyurethanes based on castor oil (ricinus communis), with polycaprolactone diol and chitosan additions, for use in biomedical applications. Molecules, 24(2). https://doi:10.3390/molecules24020237
Venkatesan, J., & Kim, S. K. (2014). Nano-hydroxyapatite composite biomaterials for bone tissue engineering - A review. Journal of Biomedical Nanotechnology, 10(10), 3124–3140. https://doi:10.1166/jbn.2014.1893
Xie, W., Ouyang, R., Wang, H., & Zhou, C. (2020). Construction and Biocompatibility of Three-Dimensional Composite Polyurethane Scaffolds in Liquid Crystal State. ACS Biomaterials Science and Engineering, 6(4), 2312–2322. https://dx.doi.org/10.1021/acsbiomaterials.9b01838
Zhao, W. J., Guan, J. J., Liu, G. E., Tian, Y., & Li, L. (2020). Annual review of Chinese Journal of Traumatology 2019. Chinese Journal of Traumatology - English Edition, 23(1), 1–4. https://doi.org/10.1016/j.cjtee.2020.01.001
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Hitalo de Jesus Bezerra da Silva; Jairo dos Santos Trindade; Domingos Rodrigues da Silva Filho; Marcel Leiner de Sá; Humberto Denys de Almeida Silva; Raiany Sena de Oliveira; José Milton Elias de Matos
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.