Portfolio optimization: Risk metric with increased objective space

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.15189

Keywords:

Risk metric; Increased objective space; Efficient statistical metric; New metrics for portfolio efficiency; Portfolio optimization.

Abstract

Markowitz's efficient EV portfolio model, given a minimum required return, minimizes the portfolio variance, a central trend risk metric calculated by the statistical method of data concentration, and thus uses a literal formula allowing the optimization solution by a quadratic algorithm, requiring little computational consumption. The evolution of the Markowitz model for asymmetric risk metrics, minimizes and/or maximizes risk, below and/or above a target t, such as downside risk, mean-separated target deviations, value at risk and conditional value at risk, however, do not allow the use of a literal formula for the optimization solution, transformed into a non-smooth algorithm, with a complex solution and greater computational consumption. The relevant aspect of the Markowitz model was to show that the most important is not the risk of the asset, but the contribution that each asset provides to the risk of the portfolio, which depends on the interrelationships between the assets, the covariance of the portfolio. Extending the reasoning as an original and relevant contribution, the article presents a new asymmetric risk metric, with greater detail of the interrelationships between assets, increasing the objective space of the optimization, with a greater number of optimized parameters, enabling the search for better results and using a literal expression allowing solution by a non-linear algorithm, less complex than the non-smooth algorithm. The bibliometric analysis carried out demonstrates the originality of the evolution of the Markowitz model for asymmetric risk metrics, presenting a literal formula for solution and with increased objective space.

References

Abensur, E.O., Moreira, D.F. & Faria A.C.R. (2020). Geometric Brownian Motion: an Alternative to High-Frequency Trading for Small Investors. Independent Journal of Management & Production (IJM&P), ISSN: 2236-269X. DOI: 10.14807/ijmp.v11i3.1114.

Allen, D., Lizieri, C. & Satchell, S. (2019). In Defense of Portfolio Optimization What If We Can Forecast? https://ssrn.com/abstract=3373594.

Arce, P., E., B., Arce, A., S., E. & Carneiro A., A., F., M. (2014). Modelo de Otimização de Contratos de Potência para o Suprimento do Sistema Elétrico Paraguaio com Itaipu. Anais do V Simpósio Brasileiro de Sistemas Elétricos, Foz do Iguaçu – PR, Brasil. 22-25/04/2014, ISSN 2177-6164.

Aria, M. & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis, Journal of Informetrics, 11(4), pp. 959-975, Elsevier, DOI: 10.1016/j.joi.2017.08.007.

Aziz, N. S. A., Spyridon V., S. & Hasim, H. M. (2019). Evaluation of multivariate GARCH models in an optimal asset allocation framework. North American Journal of Economics and Finance, 47 (2019) 568–596.

Ban, G., Karoui, N. E. & Lim, A. E. B. (2016). Machine Learning and Portfolio Optimization. Published online in Management Science Articles in Advance, 21 Nov 2016. http://dx.doi.org/10.1287/mnsc.2016.2644.

Banihashemi, S., Azarpour, A. M. & Navvabpour, H. (2016). Portfolio Optimization by Mean-Value at Risk Framework. Applied Mathematics & Information Sciences, 10, No. 5, 1935-1948 (2016).

Bawa, V.S. & Lindenberg, E.B. (1977). Capital Market Equilibrium in a Mean-lower Partial Moment Framework. Journal of Financial Economics, 5:189-200.

Becker, F., Gurtler, M. & Hibbelin M. (2015). Markowitz versus Michaud Portfolio Optimization Strategies Reconsidered. (2015), European Journal of. Finance, 21, pp. 269-291.

Begoña F. (2016). Bootstrap estimation of the efficient frontier. Computer Management Science, (2016) 13:541–570 DOI 10.1007/s10287-016-0257-2.

Bianchi, D. & Guidoliny, M. (2013). Can Long-Run Dynamic Optimal Strategies Outperform Fixed-Mix Portfolios? Evidence from Multiple Data Sets. http://ssrn.com/abstract=2353761.

Bianchi, M. L. & Tassinari, G. L. (2018). Forward-looking portfolio selection with multivariate non-Gaussian models and the Esscher transform. arXiv:1805.05584v2 [q-fin.PM] 25 May 2018.

Black, F., Jensen, C., M. & Scholes, M. (1972). The Capital Asset Pricing Model: Some Empirical Tests, pp. 79-121 in M. Jensen ed., Studies in the Theory of Capital Markets. New York: Praeger Publishers, 1972.

Brito, N.R.O. (2006). Alocação de Ativos em Private Banking. Editor: Bookman, ISBN: 9788560031085.

Bulai, V. & Horobet, A. (2018) A portfolio optimization model for a large number of hydrocarbon exploration projects. Proceedings of the International Conference on Business Excellence, vol. 12, issue. DOI: https://doi.org/10.2478/picbe-2018-0017. Published online: 15 Jun 2018.

Caporin, M. (2014). A Survey on the Four Families of Performance Measures. Journal of Economic Surveys, (2014) Vol. 28, No. 5, pp. 917–942.

Christopher W. & Millery I. Y. (2017). Optimal Control of Conditional Value-at-Risk in Continuous Time. arXiv:1512.05015v3 [math.OC] 23 Jan 2017.

DeMiguel, V., Garlappi, L. & Uppal, R., (2009). Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? The Review of Financial Studies / v 22 n 5 2009. doi:10.1093/rfs/hhm075.

DeMiguel, V., Martin-Utrera, A. & Nogales, F. J. (2013). Size matters: Optimal calibration of shrinkage estimators for portfolio Selection. Journal of Banking & Finance, 37 (2013) 3018–3034.

Domingues, M.A. (2018). Mapeamento da Ciência com o Pacote R Bibliometrix: Uma aplicação no estudo de Empreendedorismo Acadêmico. Proceeding of ISTI/SIMTEC – ISSN: 2318-3403, DOI: 10.7198/S2318-3403201800010033, Aracaju/SE – 19 a 21/09/ 2018, vol. 9, n. 1, p. 287-294.

Du, Z. & Pei, P. (2020). Backtesting Portfolio Value-at-Risk with Estimated Portfólio Weights. Journal of. Time Series. Analysis, 41: 605–619 (2020). Published online 06April 2020 inWileyOnline Library (wileyonlinelibrary.com) DOI: 10.1111/jtsa.12524.

Edirisinghe, N.C.P.& Zhang, X. (2010). Input/output selection in DEA under expert information with application to financial markets. European Journal of Operational Research 207 (2010) 1669–1678.

Fan, J., Zhang, J. & Yu K. (2012). Vast Portfolio Selection with Gross-Exposure Constraints, Journal of the American Statistical Association, 107:498, 592-606.

Fortin, J. & Hlouskova, J. (2015). Downside loss aversion:Winner or loser? Math Meth Oper Res, (2015) 81:181–233. DOI 10.1007/s00186-015-0493-1.

Fishburn, P.C. (1977). Mean-Risk Analysis with Risk Associated with Below-Target Returns. The American Economic Review, vol. 67, n.o. 2 (Mar., 1977), pp. 116-126.

Gil, A. C. (2008). Métodos e técnicas de pesquisa social. ISBN 978-85-224-5142-5. Ed. São Paulo. Atlas. 2008.

Glensk, B. & Madlener, R. (2018). Fuzzy Portfolio Optimization of Power Generation Assets. November 2018, Energies 11(11): 3043. DOI: 10.3390/en11113043. License CC BY 4.0.

Hilario-Caballero, A., Garcia-Bernabeu A, Salcedo, J., V. & Vercher, M. (2020). Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach. International Journal of Environmental Research and. Public Health, 2020, 17, 6324; doi:10.3390/ijerph17176324.

Holthausen D.M. (1981). A Risk-Return Model with Risk and Return Measured as Deviations from a Target Return. American Economic Review, American Economic Association; vol. 71(1), pp. 182-88, March 1981.

Kaczmarek, K., Dymova, L. & Sevastjanov, P. (2020). A Simple View on the Interval and Fuzzy Portfolio Selection Problems. Entropy, 2020, 22, 932; doi:10.3390/e22090932.

Kalayci C.B.; Ertenlice, O. & Akbaya, M.A. (2019) A comprehensive review of deterministic models and applications for mean-variance portfolio optimization. Published 2019, Computer Science, Expert Systems with Applications, Volume 125, 1 July 2019, Pages 345-368. https://doi.org/10.1016/j.eswa.2019.02.011.

Kang, T., Brorsen B.W. & Adam, B.D. (1996). The mean-separated target deviations risk model. Journal of Economics and Business, 48, pp. 47-66. Temple University.

Kolm, P. N., Tütüncü, R. & Fabozzi, F. J. (2014). 60 Years of portfolio optimization: Practical challenges and current trends. European Journal of Operational Research 234 (2014) 356–371.

Kwong, R. & Low, Y. (2015). Vine copulas: Modeling systemic risk and enhancing higher-moment portfolio optimization. http://ssrn.com/abstract=2259076.

Lai S., Tao, Y., Qiu, J. & Zhao, J. (2019). Gas Generation Portfolio Management Strategy Based on Financial Derivatives: Options. 2019 9th International Conference on Power and Energy Systems (ICPES), Perth, Australia, 2019, pp. 1-6, DOI: 10.1109/ICPES47639.2019.9105461.

Lasdon, L. S., Waren, A., D., Jain, A. & Ratner, M., W. (1975). Design and testing of a generalized reduced gradient code for nonlinear optimization, Case Western Reserve University, prepared for: Office of Naval Research – 1975.

Leal, R. P. C. & Mendes, B. V. M. (2013). Assessing the effect of tail dependence in portfolio allocations. Applied Financial Economics, 2013 Vol. 23, No. 15, 1249–1256, http://dx.doi.org/10.1080/09603107.2013.804160.

Li, X. & Qin, Z. (2014). Interval portfolio selection models within the framework of uncertainty theory. Economic Modelling 41 (2014) 338–344.

Lin, P. (2012). Portfolio Optimization and Risk Measurement Based on Non-Dominated Sorting Genetic Algorithm. JournalL of IindustrialL and Management Optimization, Volume 8, Number 3, August 2012. doi:10.3934/jimo.2012.8.549.

Liu, Y., Zhang, W. & Zhang, P. (2013). A multi-period portfolio selection optimization model by using interval analysis. Economic Modelling, 33 (2013) 113–119.

Mahdi, M., Masoud, M. & Alireza A., K., (2020). Development of an efficient cluster‑based portfolio optimization model under realistic market conditions. Empirical Economics, (2020), 59:2423–2442. https://doi.org/10.1007/s00181-019-01802-5.

Markowitz, H., M. (1952). Portfolio Selection. The Journal of Finance, vol. 7, n. 1, Mar., pp. 77-9, 1952.

Markowitz, H., M. (1956). The optimization of the quadratic function subject to linear constraints. Naval Res. Log. Quarterly 3, pp. 111-133, 1956.

Markowitz, H., M. (1959). Portfolio Selection, Efficiency Diversification of Investments. Cowles Foundation Monograph 16, Yale University Press, 1959.

Markowitz, H., M. (1976). Investment for the Long Run: New Evidence for an Old Rule. The American Finance Association, The Journal of Finance, vol. 31, n. 5, pp. 1273-1286, December 1976.

Markowitz, H., M. (1987). Mean- Variance Analysis in Portfolio Choice and Capital Markets. By Harry M. Markowitz. Oxford, UK: Basil Blackwell, 1987. Pp. xi + 387.

Markowitz, H., M. (1991). Foundations of Portfolio Theory. The Journal of Finance, vol. 46, n. 2, Jun, 1991, pp. 469-477.

Owen W., S. (2015). Foreign Currency Exposure within Country Exchange Traded Funds. Frontiers in Finance, Volume 1, 2015.

Post, T., Karabati, S. & Arvanitis, S. (2018). Portfolio optimization based on stochastic dominance and empirical likelihood. Journal of Econometrics, 206 (2018) 167–186.

Pritchard, A. (1969). Statistical bibliography or bibliometrics? https://www-scopus.ez20.periodicos.capes.gov.br/search/form.uri?display=basic. Journal of Documentation, v. 24, n. 4, p. 348-349, 1969. SCOPUS.

Rom, B.M. & Ferguson K.W. (1993). Post-Modern Portfolio Theory Comes of Age. Brian M. Rom and Kathleen W. Ferguson. The Journal of Investing Winter, 1993, 2 (4) 27-33; DOI: https://doi.org/10.3905/joi.2.4.27.

Rubinstein, M. (2002) Markowitz's Portfolio Selection A Fifty-Year Retrospective. The Journal of Finance, vol. LVII, n. 3, June 2002.

Ruidi S. & Yue C. (2020). A New Adaptive Entropy Portfolio Selection Model. Entropy 2020, 22, 951; doi:10.3390/e22090951.

Salah, H., B., Chaouch, M., Gannoun, A., Peretti, C. & Trabelsi, A. (2018). Mean and median-based nonparametric estimation of returns in mean-downside risk portfolio frontier. Ann Oper Res., (2018) 262:653–681. https://doi.org/10.1007/s10479-016-2235-z.

Santamaría, R., Aguarón, J. & Moreno-Jiménez, J. M. (2020). A multicriteria approach based on Analytic Hierarchy Process and compromise programming in portfolio selection. J Multi-Crit Decis Anal. 2020, 27, 141–146. DOI: 10.1002/mcda.1699.

Scherer, B. (2002). Portfolio Construction and Risk Budgeting. Risk Books, a division of the Risk Waters Group, ISBN 1 899 332 44 8. 2002a.

Scherer, B. (2010). A New Look at Minimum Variance Investing. https://ssrn.com/abstract=1681306.

Solvers Reference Guide, Frontline (2020). User Guide copyright 2020 by Frontline Systems, Inc.

Sui, Y., Hu, J. & Ma, F. (2020). A Mean-Variance Portfolio Selection Model with Interval-Valued Possibility Measures. Mathematical Problems in Engineering, Volume 2020, Article ID 4135740, 12 pages. https://doi.org/10.1155/2020/4135740.

Tang, L. & Ling, A. (2014). Closed-Form Solution for Robust Portfolio Selection with Worst-Case CVaR Risk Measure. Mathematical Problems in Engineering, Volume 2014, Article ID 494575, 9 pages. http://dx.doi.org/10.1155/2014/494575.

Tejeda, C., Gallardo, C., Domínguez, M. et al. (2017). Using wind velocity estimated from a reanalysis to minimize the variability of aggregated wind farm production over Europe. Wind Energy, 2017, Volume 21, Issue 3. https://doi.org/10.1002/we2153

Tobin, J. (1958a). Estimation of relationships for limited dependent variables. Econometrica. The Econometric Society, 26(1), pp. 24-36, 1958a, DOI: 10.2307/1907382. JSTOR 1907382.

Tobin, J. (1958b). Liquidity Preference as Behavior Towards Risk. Review of Economic Studies, 25.1, pp. 65-86, 1958b, DOI: 10.2307/2296205.

Wang, C. D., Chen Z., Lian Y. & Chen. M. (2020). Asset selection based on high frequency Sharpe ratio. Journal of Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.05.007.

Xinxin, J. & Jianjun, G. (2016). Extensions of Black-Litterman portfolio optimization model with downside risk measure. 978-1-4673-9714-8/16/$31.00© 2016 IEEE.

Yu, J., Chiou, W. P. & Mu, D. (2015). A linearized value-at-risk model with transaction costs and short selling. European Journal of Operational Research 247 (2015) 872–878.

Published

13/05/2021

How to Cite

MENDES, M. H. .; SOUZA, R. C. .; SANFINS, M. A. . Portfolio optimization: Risk metric with increased objective space. Research, Society and Development, [S. l.], v. 10, n. 5, p. e47210515189, 2021. DOI: 10.33448/rsd-v10i5.15189. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15189. Acesso em: 18 apr. 2024.

Issue

Section

Exact and Earth Sciences