Otimização de portfólio: Métrica do risco com espaço objetivo aumentado

Autores

DOI:

https://doi.org/10.33448/rsd-v10i5.15189

Palavras-chave:

Métrica do risco; Espaço objetivo aumentado; Métrica estatística eficiente; Novas métricas para eficiência do portfólio; Otimização de portfólio.

Resumo

O modelo de portfólio EV eficiente de Markowitz, dado um retorno mínimo requerido, minimiza a variância do portfólio, uma métrica do risco de tendência central calculada pelo método estatístico de concentração de dados, e assim utiliza uma fórmula literal permitindo a solução da otimização por um algoritmo quadrático, exigindo pouco consumo computacional. As evoluções do modelo de Markowitz para métricas assimétricas do risco, minimizam e/ou maximizam o risco, abaixo e/ou acima de um alvo t, como o downside risk, o mean-separated target deviations, o value at risk e o conditional value at risk, porém, não permitem utilizar uma fórmula literal para solução da otimização, transformada em um algoritmo não suave, com solução complexa e maior consumo computacional. O aspecto relevante do modelo de Markowitz foi mostrar que o mais importante não é o risco do ativo mas a contribuição que cada ativo fornece para o risco do portfólio, que depende das interrelações entre os ativos, a covariância do portfólio. Estendendo o raciocínio como contribuição original e relevante, o artigo apresenta uma nova métrica assimétrica do risco, com maior detalhamento das interrelações entre os ativos, aumentando o espaço objetivo da otimização, com maior número de parâmetros otimizados, possibilitando a busca por melhores resultados e utilizando uma expressão literal permitindo solução por um algoritmo não linear, menos complexo que o algoritmo não suave. A análise bibliométrica realizada demonstra a originalidade da evolução do modelo de Markowitz para métricas assimétricas do risco, apresentando fórmula literal para solução e com espaço objetivo aumentado.

Referências

Abensur, E.O., Moreira, D.F. & Faria A.C.R. (2020). Geometric Brownian Motion: an Alternative to High-Frequency Trading for Small Investors. Independent Journal of Management & Production (IJM&P), ISSN: 2236-269X. DOI: 10.14807/ijmp.v11i3.1114.

Allen, D., Lizieri, C. & Satchell, S. (2019). In Defense of Portfolio Optimization What If We Can Forecast? https://ssrn.com/abstract=3373594.

Arce, P., E., B., Arce, A., S., E. & Carneiro A., A., F., M. (2014). Modelo de Otimização de Contratos de Potência para o Suprimento do Sistema Elétrico Paraguaio com Itaipu. Anais do V Simpósio Brasileiro de Sistemas Elétricos, Foz do Iguaçu – PR, Brasil. 22-25/04/2014, ISSN 2177-6164.

Aria, M. & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis, Journal of Informetrics, 11(4), pp. 959-975, Elsevier, DOI: 10.1016/j.joi.2017.08.007.

Aziz, N. S. A., Spyridon V., S. & Hasim, H. M. (2019). Evaluation of multivariate GARCH models in an optimal asset allocation framework. North American Journal of Economics and Finance, 47 (2019) 568–596.

Ban, G., Karoui, N. E. & Lim, A. E. B. (2016). Machine Learning and Portfolio Optimization. Published online in Management Science Articles in Advance, 21 Nov 2016. http://dx.doi.org/10.1287/mnsc.2016.2644.

Banihashemi, S., Azarpour, A. M. & Navvabpour, H. (2016). Portfolio Optimization by Mean-Value at Risk Framework. Applied Mathematics & Information Sciences, 10, No. 5, 1935-1948 (2016).

Bawa, V.S. & Lindenberg, E.B. (1977). Capital Market Equilibrium in a Mean-lower Partial Moment Framework. Journal of Financial Economics, 5:189-200.

Becker, F., Gurtler, M. & Hibbelin M. (2015). Markowitz versus Michaud Portfolio Optimization Strategies Reconsidered. (2015), European Journal of. Finance, 21, pp. 269-291.

Begoña F. (2016). Bootstrap estimation of the efficient frontier. Computer Management Science, (2016) 13:541–570 DOI 10.1007/s10287-016-0257-2.

Bianchi, D. & Guidoliny, M. (2013). Can Long-Run Dynamic Optimal Strategies Outperform Fixed-Mix Portfolios? Evidence from Multiple Data Sets. http://ssrn.com/abstract=2353761.

Bianchi, M. L. & Tassinari, G. L. (2018). Forward-looking portfolio selection with multivariate non-Gaussian models and the Esscher transform. arXiv:1805.05584v2 [q-fin.PM] 25 May 2018.

Black, F., Jensen, C., M. & Scholes, M. (1972). The Capital Asset Pricing Model: Some Empirical Tests, pp. 79-121 in M. Jensen ed., Studies in the Theory of Capital Markets. New York: Praeger Publishers, 1972.

Brito, N.R.O. (2006). Alocação de Ativos em Private Banking. Editor: Bookman, ISBN: 9788560031085.

Bulai, V. & Horobet, A. (2018) A portfolio optimization model for a large number of hydrocarbon exploration projects. Proceedings of the International Conference on Business Excellence, vol. 12, issue. DOI: https://doi.org/10.2478/picbe-2018-0017. Published online: 15 Jun 2018.

Caporin, M. (2014). A Survey on the Four Families of Performance Measures. Journal of Economic Surveys, (2014) Vol. 28, No. 5, pp. 917–942.

Christopher W. & Millery I. Y. (2017). Optimal Control of Conditional Value-at-Risk in Continuous Time. arXiv:1512.05015v3 [math.OC] 23 Jan 2017.

DeMiguel, V., Garlappi, L. & Uppal, R., (2009). Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? The Review of Financial Studies / v 22 n 5 2009. doi:10.1093/rfs/hhm075.

DeMiguel, V., Martin-Utrera, A. & Nogales, F. J. (2013). Size matters: Optimal calibration of shrinkage estimators for portfolio Selection. Journal of Banking & Finance, 37 (2013) 3018–3034.

Domingues, M.A. (2018). Mapeamento da Ciência com o Pacote R Bibliometrix: Uma aplicação no estudo de Empreendedorismo Acadêmico. Proceeding of ISTI/SIMTEC – ISSN: 2318-3403, DOI: 10.7198/S2318-3403201800010033, Aracaju/SE – 19 a 21/09/ 2018, vol. 9, n. 1, p. 287-294.

Du, Z. & Pei, P. (2020). Backtesting Portfolio Value-at-Risk with Estimated Portfólio Weights. Journal of. Time Series. Analysis, 41: 605–619 (2020). Published online 06April 2020 inWileyOnline Library (wileyonlinelibrary.com) DOI: 10.1111/jtsa.12524.

Edirisinghe, N.C.P.& Zhang, X. (2010). Input/output selection in DEA under expert information with application to financial markets. European Journal of Operational Research 207 (2010) 1669–1678.

Fan, J., Zhang, J. & Yu K. (2012). Vast Portfolio Selection with Gross-Exposure Constraints, Journal of the American Statistical Association, 107:498, 592-606.

Fortin, J. & Hlouskova, J. (2015). Downside loss aversion:Winner or loser? Math Meth Oper Res, (2015) 81:181–233. DOI 10.1007/s00186-015-0493-1.

Fishburn, P.C. (1977). Mean-Risk Analysis with Risk Associated with Below-Target Returns. The American Economic Review, vol. 67, n.o. 2 (Mar., 1977), pp. 116-126.

Gil, A. C. (2008). Métodos e técnicas de pesquisa social. ISBN 978-85-224-5142-5. Ed. São Paulo. Atlas. 2008.

Glensk, B. & Madlener, R. (2018). Fuzzy Portfolio Optimization of Power Generation Assets. November 2018, Energies 11(11): 3043. DOI: 10.3390/en11113043. License CC BY 4.0.

Hilario-Caballero, A., Garcia-Bernabeu A, Salcedo, J., V. & Vercher, M. (2020). Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach. International Journal of Environmental Research and. Public Health, 2020, 17, 6324; doi:10.3390/ijerph17176324.

Holthausen D.M. (1981). A Risk-Return Model with Risk and Return Measured as Deviations from a Target Return. American Economic Review, American Economic Association; vol. 71(1), pp. 182-88, March 1981.

Kaczmarek, K., Dymova, L. & Sevastjanov, P. (2020). A Simple View on the Interval and Fuzzy Portfolio Selection Problems. Entropy, 2020, 22, 932; doi:10.3390/e22090932.

Kalayci C.B.; Ertenlice, O. & Akbaya, M.A. (2019) A comprehensive review of deterministic models and applications for mean-variance portfolio optimization. Published 2019, Computer Science, Expert Systems with Applications, Volume 125, 1 July 2019, Pages 345-368. https://doi.org/10.1016/j.eswa.2019.02.011.

Kang, T., Brorsen B.W. & Adam, B.D. (1996). The mean-separated target deviations risk model. Journal of Economics and Business, 48, pp. 47-66. Temple University.

Kolm, P. N., Tütüncü, R. & Fabozzi, F. J. (2014). 60 Years of portfolio optimization: Practical challenges and current trends. European Journal of Operational Research 234 (2014) 356–371.

Kwong, R. & Low, Y. (2015). Vine copulas: Modeling systemic risk and enhancing higher-moment portfolio optimization. http://ssrn.com/abstract=2259076.

Lai S., Tao, Y., Qiu, J. & Zhao, J. (2019). Gas Generation Portfolio Management Strategy Based on Financial Derivatives: Options. 2019 9th International Conference on Power and Energy Systems (ICPES), Perth, Australia, 2019, pp. 1-6, DOI: 10.1109/ICPES47639.2019.9105461.

Lasdon, L. S., Waren, A., D., Jain, A. & Ratner, M., W. (1975). Design and testing of a generalized reduced gradient code for nonlinear optimization, Case Western Reserve University, prepared for: Office of Naval Research – 1975.

Leal, R. P. C. & Mendes, B. V. M. (2013). Assessing the effect of tail dependence in portfolio allocations. Applied Financial Economics, 2013 Vol. 23, No. 15, 1249–1256, http://dx.doi.org/10.1080/09603107.2013.804160.

Li, X. & Qin, Z. (2014). Interval portfolio selection models within the framework of uncertainty theory. Economic Modelling 41 (2014) 338–344.

Lin, P. (2012). Portfolio Optimization and Risk Measurement Based on Non-Dominated Sorting Genetic Algorithm. JournalL of IindustrialL and Management Optimization, Volume 8, Number 3, August 2012. doi:10.3934/jimo.2012.8.549.

Liu, Y., Zhang, W. & Zhang, P. (2013). A multi-period portfolio selection optimization model by using interval analysis. Economic Modelling, 33 (2013) 113–119.

Mahdi, M., Masoud, M. & Alireza A., K., (2020). Development of an efficient cluster‑based portfolio optimization model under realistic market conditions. Empirical Economics, (2020), 59:2423–2442. https://doi.org/10.1007/s00181-019-01802-5.

Markowitz, H., M. (1952). Portfolio Selection. The Journal of Finance, vol. 7, n. 1, Mar., pp. 77-9, 1952.

Markowitz, H., M. (1956). The optimization of the quadratic function subject to linear constraints. Naval Res. Log. Quarterly 3, pp. 111-133, 1956.

Markowitz, H., M. (1959). Portfolio Selection, Efficiency Diversification of Investments. Cowles Foundation Monograph 16, Yale University Press, 1959.

Markowitz, H., M. (1976). Investment for the Long Run: New Evidence for an Old Rule. The American Finance Association, The Journal of Finance, vol. 31, n. 5, pp. 1273-1286, December 1976.

Markowitz, H., M. (1987). Mean- Variance Analysis in Portfolio Choice and Capital Markets. By Harry M. Markowitz. Oxford, UK: Basil Blackwell, 1987. Pp. xi + 387.

Markowitz, H., M. (1991). Foundations of Portfolio Theory. The Journal of Finance, vol. 46, n. 2, Jun, 1991, pp. 469-477.

Owen W., S. (2015). Foreign Currency Exposure within Country Exchange Traded Funds. Frontiers in Finance, Volume 1, 2015.

Post, T., Karabati, S. & Arvanitis, S. (2018). Portfolio optimization based on stochastic dominance and empirical likelihood. Journal of Econometrics, 206 (2018) 167–186.

Pritchard, A. (1969). Statistical bibliography or bibliometrics? https://www-scopus.ez20.periodicos.capes.gov.br/search/form.uri?display=basic. Journal of Documentation, v. 24, n. 4, p. 348-349, 1969. SCOPUS.

Rom, B.M. & Ferguson K.W. (1993). Post-Modern Portfolio Theory Comes of Age. Brian M. Rom and Kathleen W. Ferguson. The Journal of Investing Winter, 1993, 2 (4) 27-33; DOI: https://doi.org/10.3905/joi.2.4.27.

Rubinstein, M. (2002) Markowitz's Portfolio Selection A Fifty-Year Retrospective. The Journal of Finance, vol. LVII, n. 3, June 2002.

Ruidi S. & Yue C. (2020). A New Adaptive Entropy Portfolio Selection Model. Entropy 2020, 22, 951; doi:10.3390/e22090951.

Salah, H., B., Chaouch, M., Gannoun, A., Peretti, C. & Trabelsi, A. (2018). Mean and median-based nonparametric estimation of returns in mean-downside risk portfolio frontier. Ann Oper Res., (2018) 262:653–681. https://doi.org/10.1007/s10479-016-2235-z.

Santamaría, R., Aguarón, J. & Moreno-Jiménez, J. M. (2020). A multicriteria approach based on Analytic Hierarchy Process and compromise programming in portfolio selection. J Multi-Crit Decis Anal. 2020, 27, 141–146. DOI: 10.1002/mcda.1699.

Scherer, B. (2002). Portfolio Construction and Risk Budgeting. Risk Books, a division of the Risk Waters Group, ISBN 1 899 332 44 8. 2002a.

Scherer, B. (2010). A New Look at Minimum Variance Investing. https://ssrn.com/abstract=1681306.

Solvers Reference Guide, Frontline (2020). User Guide copyright 2020 by Frontline Systems, Inc.

Sui, Y., Hu, J. & Ma, F. (2020). A Mean-Variance Portfolio Selection Model with Interval-Valued Possibility Measures. Mathematical Problems in Engineering, Volume 2020, Article ID 4135740, 12 pages. https://doi.org/10.1155/2020/4135740.

Tang, L. & Ling, A. (2014). Closed-Form Solution for Robust Portfolio Selection with Worst-Case CVaR Risk Measure. Mathematical Problems in Engineering, Volume 2014, Article ID 494575, 9 pages. http://dx.doi.org/10.1155/2014/494575.

Tejeda, C., Gallardo, C., Domínguez, M. et al. (2017). Using wind velocity estimated from a reanalysis to minimize the variability of aggregated wind farm production over Europe. Wind Energy, 2017, Volume 21, Issue 3. https://doi.org/10.1002/we2153

Tobin, J. (1958a). Estimation of relationships for limited dependent variables. Econometrica. The Econometric Society, 26(1), pp. 24-36, 1958a, DOI: 10.2307/1907382. JSTOR 1907382.

Tobin, J. (1958b). Liquidity Preference as Behavior Towards Risk. Review of Economic Studies, 25.1, pp. 65-86, 1958b, DOI: 10.2307/2296205.

Wang, C. D., Chen Z., Lian Y. & Chen. M. (2020). Asset selection based on high frequency Sharpe ratio. Journal of Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.05.007.

Xinxin, J. & Jianjun, G. (2016). Extensions of Black-Litterman portfolio optimization model with downside risk measure. 978-1-4673-9714-8/16/$31.00© 2016 IEEE.

Yu, J., Chiou, W. P. & Mu, D. (2015). A linearized value-at-risk model with transaction costs and short selling. European Journal of Operational Research 247 (2015) 872–878.

Downloads

Publicado

13/05/2021

Como Citar

MENDES, M. H. .; SOUZA, R. C. .; SANFINS, M. A. . Otimização de portfólio: Métrica do risco com espaço objetivo aumentado. Research, Society and Development, [S. l.], v. 10, n. 5, p. e47210515189, 2021. DOI: 10.33448/rsd-v10i5.15189. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15189. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Exatas e da Terra