Enhancing secondary metabolite production by Chlorella sorokiniana using an alternative medium with vinasse

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.15237

Keywords:

Antioxidant activity; DPPH; Dietary supplements; Microalgal cultivation.

Abstract

Microalgae production is expensive and requires high volumes of water and energy. The use of sugar cane vinasse as an alternative medium, has gained attention for microalgae cultivation. In this study, we compared the biomass yield and secondary metabolite production by Chlorella sorokiniana grown in a commercial medium (Sueoka) and versus those grown in a medium prepared with cane vinasse (0.1%) supplemented with N:P:K (20-5-20 g.L-1). Microalgae reached the maximum growth point 14 days faster in the alternative medium. Increased average phenolic compound levels and flavonoid content were found in the vinasse medium (15.28 ± 0.32 mg GAE.g-1 and 72.30 ± 5.28 mg QE. g-1, respectively) compared to that of the commercial medium (6.02 ± 0.13 mg GAE .g-1 and 13.12 ± 1.33 mg QE g-1, respectively). The maximum antioxidant activity (AOA) of C. sorokiniana grown in vinasse medium was 88.05% with an extract concentration of 1500 µg.mL-1, and an IC50 of 357.7 ± 27.35 µg.mL-1. Different factors, such as stress due to chemical oxygen demand (COD), and vinasse-added ions, may have induced variances in secondary metabolite synthesis. Further investigations are needed to explore natural and low cost alternatives to increasing flavonoid yield for the bioprospection of microalgae.

References

Abd El-Baky, H. H.; El Baz, F. K. & El-Baroty, G. S. (2008). Evaluation of marine alga Ulvalactuca L. as a source of natural preservative ingredient. Am Eurasian J Agr Environ Sci 3(11), 434–444.

Agati, G. & Tattini, M. (2010). Multiple functional roles of flavonoids in photoprotection. New Phytol 186, 786–793. Doi: 10.1111/j.1469-8137.2010.03269.x

Alves, C. Q.; David, J. M.; David, J. P.; Bahia, M. V. & Aguiar, R. M. (2010). Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Quím Nova 33, 2202-2210. Doi: 10.1590/S0100-40422010001000033

Aremu, A. O.; Neményi, M.; Stirk, W. A.; Ördög, V. & Van Staden, J. (2015). Manipulation of nitrogen levels and mode of cultivation are viable methods to improve the lipid, fatty acids, phytochemical content, and biactivies in Chlorella minutissima. J Phycol 51(1), 659–669. Doi: 10.1111/jpy.12308

Borowitzka, M. A. (2013). High-value products from microalgae - their development and commercialization. J Appl Phycol 25, 743–756.

Buer, C. S.; Imin, N. & Djordjevic, M. A. (2010). Flavonoids: new roles for old molecules. J Integr Plant Biol 52(1), 98–111. Doi: 10.1111/j.1744-7909.2010.00905.x

Cha, K. H.; Kang, S. W.; Kim, C. Y.; Um, B. H.; Na, Y. R. & Pan, C. (2010). Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J Agr Food Chem 58(8), 4756–4761. Doi: 10.1021/jf100062m

Chen, Z.; Qiu, S.; Amadu, A. A.; Shen, Y.; Wang, L.; Wu, Z. & Ge, S. (2020). Simultaneous improvements on nutrient and Mg recoveries of microalgal bioremediation for municipal wastewater and nickel laterite ore wastewater. Bioresour Technol 297, 122517. Doi: 10.1016/j.biortech.2019.122517

Choi, Y. Y.; Hong, M. E.; Chang, W. S. & Sim, S. J. (2019). Autotrophic biodiesel production from the thermotolerant microalga Chlorella sorokiniana by enhancing the carbon availability with temperature adjustment. Biotechnol Bioprocess Eng 24(1), 223-231. Doi: 10.1007/s12257-018-0375-5

Chu, W. L. (2012). Biotechnological applications of microalgae. IeJSME 6 (Suppl 1), S24-S37.

Goiris, K.; Collen, W. V.; Wilches, I.; Léon-Tamarez, F.; Cooman, L. & Muylaert, K. (2015). Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Res 7, 51-57. Doi: 10.1016/j.algal.2014.12.002

Goiris, K.; Muylaert, K. & Fraeye, I.J. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24(1), 1477-1486. Doi: 10.1007/s10811-012-9804-6

Goiris, K.; Muylaert, K.; Voorspoels, S.; De Paepe, D. J. E.; Baart, G. & De Cooman, L. (2014). Detection of flavonoids in microalgae from different evolutionary lineages. J Phycol 50(1), 483–492. Doi: 10.1111/jpy.12180.

Hajimahmoodi, M.; Faramarzi, M.A.; Mohammadi, N.; Soltani, N.; Oveisi, M. R. & Nafissi-Varcheh, N. (2010). Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol 22(1), 43-50. Doi: 10.1007/s10811-009-9424-y.

Havsteen, B. H. (2012). The biochemistry and medical significance of the flavonoids. Pharmacol Therapeut 96(1), 67-202. Doi: 10.1016/s0163-7258(02)00298-x.

Huang, G.; Wei, D.; Chen, F.; Zhang, W. (2010). Biodiesel production by microalgal biotechnology. Appl Energy 87(1), 38-46. Doi: 10.1016/j.apenergy.2009.06.016

Ishiguro, S.; Robben, N.; Burghart, R.; Cote, P.; Greenway, S.; Thakkar, R. & Tamura, M. (2020). Cell wall membrane fraction of Chlorella sorokiniana enhances host antitumor immunity and inhibits colon carcinoma growth in mice. Integr Cancer Ther 19. Doi:10.1177/1534735419900555

Jiang, L.; Luo, S.; Fan, X.; Yang.; Z. & Guo, R. (2011). Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy 88(10), 3336-3341. Doi: 10.1016/j.apenergy.2011.03.043

Katharios P.; Papadakis IE.; Prapas A (2005). Mortality control of viral encephalopathy and retinopathy in 0+ grouper Epinephelus marginatus after prolonged bath in dense Chlorella minutissima culture. B Eur Assoc Fish Pat 25(1), 28–31.

Kledjus, B.; Kopeckýb, J.; Benesová, L. & Vaceka, J. (2009). Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J Chromatogr 1216 (1), 763–771. Doi: 10.1016/j.chroma.2008.11.096

Kobayashi, N.; Noel, E.A.; Barnes, A.; et al (2013). Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour Technol 150(1), 377–386. Doi: 10.1016/j.biortech.2013.10.032

Koche, J. C., Fundamentos de Metodologia Científica-Teoria da ciência e iniciação à pesquisa.(2011)Editora Vozes. Petrópolis –RJ.

Koes, R.; Verweij, W. & Quattrocchio, F. (2005). Flavonoids: a colorfulmodel for the regulation and evolution of biochemical pathways. Trends Plant Sci 10(1), 236-242. Doi: 10.1016/j.tplants.2005.03.002

Li, H.; Cheng, K.; Wong, C.; Fan, K.; Chen, F. & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102, 771–776. Doi: 10.1016/j.foodchem.2006.06.022

Li, T.; Zheng, Y.; Yu, L. & Chen, S. (2013). High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour Technol 131, 60-67. Doi: 10.1016/j.biortech.2012.11.121

Liberio, S. A.; Pereira, A. L.; Dutra, R. P.; Reis, A. S.; Araújo, M. J.; Mattar, N. S.; Silva, L. A.; Ribeiro, M. N.; Nascimento, F. R.; Guerra, R. N. & Monteiro-Neto, V. (2011). Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith. BMC Complement Altern Med 11, 1-10. Doi: 10.1186/1472-6882-11-108.

Lin, P. Y.; Tsai, C. T.; Chuang, W. L.; Chao, Y. H.; Pan, I. H.; Chen, Y. K.; Lin, C. C. & Wang, B. Y. (2017). Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo. BMC Complem Altern M 17(1), 88. Doi: 10.1186/s12906-017-1611-9

Lobo, V.; Patil, A.; Phatak, A. & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 4, 118-126. Doi: 10.4103%2F0973-7847.70902

Maisuthisakul, P.; Suttajit, M. & Pongsawatmanit, R. (2007). Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem 100 (1), 1409-1418. Doi: 10.1016/j.foodchem.2005.11.032

Mariutti, L. R. B. & Bragagnolo, N. (2007). Revisão: antioxidantes naturais da família Lamiaceae - Aplicação em produtos alimentícios. Braz J Food Technol 10, 96-103.

Markham, K. R. & Andersen, O. M. (2006). Flavonoids: Chemistry, Biochemistry and Applications. CRC Press, Florida 1212p.

Martínez-Flórez, S.; Gonzalez-Gallego, J.; Culebras, J. M. & Tuñón, M. J. (2002). Los flavonoides: propiedades y acciones antioxidantes. Nutric Hospitalar 17(1), 271-278.

Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J. & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Faso honeys as well as their radical scavenging activity. Food Chem 91(1), 571-577. Doi: 10.1016/j.foodchem.2004.10.006

Menegazzo, M. L.; Nascimento, V. M.; Hestekin, C. N.; Hestekin, J. A. & Fonseca, G. G. (2020). Evaluation of Chlorella sorokiniana cultivated in outdoor photobioreactors for biodiesel production. Biofuels 1-6. Doi: 10.1080/17597269.2020.1763094

Morgese, M. G.; Mhillaj, E.; Francavilla, M.; Bove, M.; Morgano, L.; Tucci, P. & Schiavone, S. (2016). Chlorella sorokiniana extract improves short-term memory in rats. Molecules 21(10), 1311. Doi: 10.3390/molecules21101311

Ohse, S.; Derner, R. B.; Ozório, R. Á.; Braga, M. V. C.; Cunha, P.; Lamarca, C. P. & Santos, M. E. (2008). Crescimento de microalgas em sistema autotrófico estacionário. Biotemas 21(2), 7-14.

Olasehinde, T. A.; Odjadjare, E. C.; Mabinya, L. V.; Olaniran, A. O. & Okoh, A. I. (2019). Chlorella sorokiniana and Chlorella minutissima exhibit antioxidant potentials, inhibit cholinesterases and modulate disaggregation of β-amyloid fibrils. Electron J Biotechnol 40, 1–9. Doi: 10.1016/j.ejbt.2019.03.008

Onofrejová, L.; Vasícková, J.; Klejdus, B.; Stratil, P.; Misurcová, L.; Krácmar, S.; Kopecký, J. & Vacek, J. (2010). Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. J Pharmaceut Biomed 51 (1), 464-470. Doi: 10.1016/j.jpba.2009.03.027

Parisi, A. S.; Younes, S. & Reinehr, C. O. (2009). Avaliação da atividade antibacteriana da microalga Spirulina platensis. Ver Ciênc Farm Básica Apl 30(3), 297-301.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da Pesquisa Científica (free ebook). Santa Maria. RS.

Pires, J. C. M.; Alvim-Ferraz, M. C. M.; Martins, F. G. & Simões, M. (2013). Wastewater treatment to enhance the economic viability of microalgae culture. Environ Sci Pollut Res Int 20(1), 5096–5105. Doi: 10.1007/s11356-013-1791-x

Plaza, M. N.; Herrero, M.; Cifuentes, H. A. & Ibáñez, E. (2009). Innovative natural functional ingredients from microalgae. J Agric Food Chem 57(16), 7159–70. Doi: 10.1021/jf901070g.

Raposo, M. F. D. J. & Morais, A. M. M. B. (2015). Microalgae for the prevention of cardiovascular disease and stroke. Life Sci 125, 32–41. Doi: 10.1016/j.lfs.2014.09.018.

Ribeiro, D. M.; Zanetti, G. T.; Juliao, M. H. M.; Masetto, T. E.; Gelinski, J. M. L. N. & Fonseca, G. G. (2019). Effect of different culture media on growth of Chlorella sorokiniana and the influence of microalgal effluents on the germination of lettuce seeds. J Appl Biol Biotechnol 7(1), 6-10. Doi: 10.7324/JABB.2019.70102

Safafar, H.; Wagenen, J.; Moller, P. & Jacobsen, C. (2015). Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar Drugs 13, 7339–7356. Doi: 10.3390/md13127069

Scholz, B. & Liebezeit, G. (2012). Screening for biological activities and toxicological effects of 63 phytoplankton species isolated from freshwater, marine and brackish water habitats. Harmful Algae 20, 58–70. Doi: 10.1016/j.hal.2012.07.007

Shen, Y.; Zhu, W.; Li, H.; Ho, S.H.; Chen, J.; Xie, Y. & Shi, X. (2018). Enhancing cadmium bioremediation by a complex of water-hyacinth derived pellets immobilized with Chlorella sp. Bioresour Technol 257, 157-163. Doi: 10.1016/j.biortech.2018.02.060

Sipaúba-Tavares, L. H. & Rocha, O. (2003). Produção de plâncton (fitoplâncton e zooplâncton) para alimentação de organismos aquáticos,2 ed. São Carlos: RiMa 122p. 2p.

Skjånes, K.; Rebours, C. & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33(2), 172‐215. Doi: 10.3109/07388551.2012.681625

Stafford, H. A. (1991). Flavonoid evolution: an enzymic approach. J Plant Physiol 96, 680–685.

Sueoka, N. (1960). Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. Proc Natl Acad Sci 46 (1), 83-91. Doi: 10.1073/pnas.46.1.83.

Sutherland, D. L. & Ralph, P. J. (2019). Microalgal bioremediation of emerging contaminants-opportunities and challenges. Water Res 164, 114921. Doi: 10.1016/j.watres.2019.114921

Vendramini, A. L. A. & Trugo, L. C. (2004). Phenolic Compounds in Acerola Fruit (Malpighiapunicifolia, L.). J Brazil Chem Soc 15, 664-668.

Vijayavel, K.; Anbuselvam, C. & Balasubramanian, M. P. (2007). Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene-induced oxidative stress in the albino rats. Mol Cell Biochem 303 (1-2), 39‐44, 2007. Doi: 10.1007/s11010-007-9453-2.

Vizzoto, M. & Pereira, M. C. (2011). Amora-preta (rubussp.): otimização do processo de extração para determinação de compostos fenólicos antioxidantes. Ver Bras Frutic 33(4), 1209-1214. Doi: 10.1590/S0100-29452011000400020.

Wu, Y.H.; Yu, L.; Li, X.; Hu, H.Y. & Su, Z.F. (2012). Biomass production of a Scenedesmus sp. under phosphorous- starvation cultivation condition. Bioresour Technol 112, 193–198. Doi: 10.1016/j.biortech.2012.02.037

Zhang, Y.; Yang, L.; Zu, Y.; Chen, X.; Wang, F. & Liu, F. (2010). Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage. Food Chem 118(3), 656–662. Doi: 10.1016/j.foodchem.2009.05.038

Zhang, Y-M.; Chen, H.; He, C-L. & Wang, Q. (2013). Nitrogen Starvation Induced Oxidative Stress in an Oil-Producing Green Alga Chlorella sorokiniana C3. PLoS ONE 8(7). Doi: 10.1371/journal.pone.0069225

Downloads

Published

14/05/2021

How to Cite

ANSILAGO, M.; RAMOS, M. M. .; MUSSURY, R. M.; CARVALHO, E. M. de. Enhancing secondary metabolite production by Chlorella sorokiniana using an alternative medium with vinasse. Research, Society and Development, [S. l.], v. 10, n. 5, p. e49710515237, 2021. DOI: 10.33448/rsd-v10i5.15237. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15237. Acesso em: 13 jan. 2025.

Issue

Section

Agrarian and Biological Sciences