Enhancing secondary metabolite production by Chlorella sorokiniana using an alternative medium with vinasse
DOI:
https://doi.org/10.33448/rsd-v10i5.15237Keywords:
Antioxidant activity; DPPH; Dietary supplements; Microalgal cultivation.Abstract
Microalgae production is expensive and requires high volumes of water and energy. The use of sugar cane vinasse as an alternative medium, has gained attention for microalgae cultivation. In this study, we compared the biomass yield and secondary metabolite production by Chlorella sorokiniana grown in a commercial medium (Sueoka) and versus those grown in a medium prepared with cane vinasse (0.1%) supplemented with N:P:K (20-5-20 g.L-1). Microalgae reached the maximum growth point 14 days faster in the alternative medium. Increased average phenolic compound levels and flavonoid content were found in the vinasse medium (15.28 ± 0.32 mg GAE.g-1 and 72.30 ± 5.28 mg QE. g-1, respectively) compared to that of the commercial medium (6.02 ± 0.13 mg GAE .g-1 and 13.12 ± 1.33 mg QE g-1, respectively). The maximum antioxidant activity (AOA) of C. sorokiniana grown in vinasse medium was 88.05% with an extract concentration of 1500 µg.mL-1, and an IC50 of 357.7 ± 27.35 µg.mL-1. Different factors, such as stress due to chemical oxygen demand (COD), and vinasse-added ions, may have induced variances in secondary metabolite synthesis. Further investigations are needed to explore natural and low cost alternatives to increasing flavonoid yield for the bioprospection of microalgae.
References
Abd El-Baky, H. H.; El Baz, F. K. & El-Baroty, G. S. (2008). Evaluation of marine alga Ulvalactuca L. as a source of natural preservative ingredient. Am Eurasian J Agr Environ Sci 3(11), 434–444.
Agati, G. & Tattini, M. (2010). Multiple functional roles of flavonoids in photoprotection. New Phytol 186, 786–793. Doi: 10.1111/j.1469-8137.2010.03269.x
Alves, C. Q.; David, J. M.; David, J. P.; Bahia, M. V. & Aguiar, R. M. (2010). Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Quím Nova 33, 2202-2210. Doi: 10.1590/S0100-40422010001000033
Aremu, A. O.; Neményi, M.; Stirk, W. A.; Ördög, V. & Van Staden, J. (2015). Manipulation of nitrogen levels and mode of cultivation are viable methods to improve the lipid, fatty acids, phytochemical content, and biactivies in Chlorella minutissima. J Phycol 51(1), 659–669. Doi: 10.1111/jpy.12308
Borowitzka, M. A. (2013). High-value products from microalgae - their development and commercialization. J Appl Phycol 25, 743–756.
Buer, C. S.; Imin, N. & Djordjevic, M. A. (2010). Flavonoids: new roles for old molecules. J Integr Plant Biol 52(1), 98–111. Doi: 10.1111/j.1744-7909.2010.00905.x
Cha, K. H.; Kang, S. W.; Kim, C. Y.; Um, B. H.; Na, Y. R. & Pan, C. (2010). Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J Agr Food Chem 58(8), 4756–4761. Doi: 10.1021/jf100062m
Chen, Z.; Qiu, S.; Amadu, A. A.; Shen, Y.; Wang, L.; Wu, Z. & Ge, S. (2020). Simultaneous improvements on nutrient and Mg recoveries of microalgal bioremediation for municipal wastewater and nickel laterite ore wastewater. Bioresour Technol 297, 122517. Doi: 10.1016/j.biortech.2019.122517
Choi, Y. Y.; Hong, M. E.; Chang, W. S. & Sim, S. J. (2019). Autotrophic biodiesel production from the thermotolerant microalga Chlorella sorokiniana by enhancing the carbon availability with temperature adjustment. Biotechnol Bioprocess Eng 24(1), 223-231. Doi: 10.1007/s12257-018-0375-5
Chu, W. L. (2012). Biotechnological applications of microalgae. IeJSME 6 (Suppl 1), S24-S37.
Goiris, K.; Collen, W. V.; Wilches, I.; Léon-Tamarez, F.; Cooman, L. & Muylaert, K. (2015). Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Res 7, 51-57. Doi: 10.1016/j.algal.2014.12.002
Goiris, K.; Muylaert, K. & Fraeye, I.J. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24(1), 1477-1486. Doi: 10.1007/s10811-012-9804-6
Goiris, K.; Muylaert, K.; Voorspoels, S.; De Paepe, D. J. E.; Baart, G. & De Cooman, L. (2014). Detection of flavonoids in microalgae from different evolutionary lineages. J Phycol 50(1), 483–492. Doi: 10.1111/jpy.12180.
Hajimahmoodi, M.; Faramarzi, M.A.; Mohammadi, N.; Soltani, N.; Oveisi, M. R. & Nafissi-Varcheh, N. (2010). Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol 22(1), 43-50. Doi: 10.1007/s10811-009-9424-y.
Havsteen, B. H. (2012). The biochemistry and medical significance of the flavonoids. Pharmacol Therapeut 96(1), 67-202. Doi: 10.1016/s0163-7258(02)00298-x.
Huang, G.; Wei, D.; Chen, F.; Zhang, W. (2010). Biodiesel production by microalgal biotechnology. Appl Energy 87(1), 38-46. Doi: 10.1016/j.apenergy.2009.06.016
Ishiguro, S.; Robben, N.; Burghart, R.; Cote, P.; Greenway, S.; Thakkar, R. & Tamura, M. (2020). Cell wall membrane fraction of Chlorella sorokiniana enhances host antitumor immunity and inhibits colon carcinoma growth in mice. Integr Cancer Ther 19. Doi:10.1177/1534735419900555
Jiang, L.; Luo, S.; Fan, X.; Yang.; Z. & Guo, R. (2011). Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy 88(10), 3336-3341. Doi: 10.1016/j.apenergy.2011.03.043
Katharios P.; Papadakis IE.; Prapas A (2005). Mortality control of viral encephalopathy and retinopathy in 0+ grouper Epinephelus marginatus after prolonged bath in dense Chlorella minutissima culture. B Eur Assoc Fish Pat 25(1), 28–31.
Kledjus, B.; Kopeckýb, J.; Benesová, L. & Vaceka, J. (2009). Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J Chromatogr 1216 (1), 763–771. Doi: 10.1016/j.chroma.2008.11.096
Kobayashi, N.; Noel, E.A.; Barnes, A.; et al (2013). Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour Technol 150(1), 377–386. Doi: 10.1016/j.biortech.2013.10.032
Koche, J. C., Fundamentos de Metodologia Científica-Teoria da ciência e iniciação à pesquisa.(2011)Editora Vozes. Petrópolis –RJ.
Koes, R.; Verweij, W. & Quattrocchio, F. (2005). Flavonoids: a colorfulmodel for the regulation and evolution of biochemical pathways. Trends Plant Sci 10(1), 236-242. Doi: 10.1016/j.tplants.2005.03.002
Li, H.; Cheng, K.; Wong, C.; Fan, K.; Chen, F. & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102, 771–776. Doi: 10.1016/j.foodchem.2006.06.022
Li, T.; Zheng, Y.; Yu, L. & Chen, S. (2013). High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour Technol 131, 60-67. Doi: 10.1016/j.biortech.2012.11.121
Liberio, S. A.; Pereira, A. L.; Dutra, R. P.; Reis, A. S.; Araújo, M. J.; Mattar, N. S.; Silva, L. A.; Ribeiro, M. N.; Nascimento, F. R.; Guerra, R. N. & Monteiro-Neto, V. (2011). Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith. BMC Complement Altern Med 11, 1-10. Doi: 10.1186/1472-6882-11-108.
Lin, P. Y.; Tsai, C. T.; Chuang, W. L.; Chao, Y. H.; Pan, I. H.; Chen, Y. K.; Lin, C. C. & Wang, B. Y. (2017). Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo. BMC Complem Altern M 17(1), 88. Doi: 10.1186/s12906-017-1611-9
Lobo, V.; Patil, A.; Phatak, A. & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 4, 118-126. Doi: 10.4103%2F0973-7847.70902
Maisuthisakul, P.; Suttajit, M. & Pongsawatmanit, R. (2007). Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem 100 (1), 1409-1418. Doi: 10.1016/j.foodchem.2005.11.032
Mariutti, L. R. B. & Bragagnolo, N. (2007). Revisão: antioxidantes naturais da família Lamiaceae - Aplicação em produtos alimentícios. Braz J Food Technol 10, 96-103.
Markham, K. R. & Andersen, O. M. (2006). Flavonoids: Chemistry, Biochemistry and Applications. CRC Press, Florida 1212p.
Martínez-Flórez, S.; Gonzalez-Gallego, J.; Culebras, J. M. & Tuñón, M. J. (2002). Los flavonoides: propiedades y acciones antioxidantes. Nutric Hospitalar 17(1), 271-278.
Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J. & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Faso honeys as well as their radical scavenging activity. Food Chem 91(1), 571-577. Doi: 10.1016/j.foodchem.2004.10.006
Menegazzo, M. L.; Nascimento, V. M.; Hestekin, C. N.; Hestekin, J. A. & Fonseca, G. G. (2020). Evaluation of Chlorella sorokiniana cultivated in outdoor photobioreactors for biodiesel production. Biofuels 1-6. Doi: 10.1080/17597269.2020.1763094
Morgese, M. G.; Mhillaj, E.; Francavilla, M.; Bove, M.; Morgano, L.; Tucci, P. & Schiavone, S. (2016). Chlorella sorokiniana extract improves short-term memory in rats. Molecules 21(10), 1311. Doi: 10.3390/molecules21101311
Ohse, S.; Derner, R. B.; Ozório, R. Á.; Braga, M. V. C.; Cunha, P.; Lamarca, C. P. & Santos, M. E. (2008). Crescimento de microalgas em sistema autotrófico estacionário. Biotemas 21(2), 7-14.
Olasehinde, T. A.; Odjadjare, E. C.; Mabinya, L. V.; Olaniran, A. O. & Okoh, A. I. (2019). Chlorella sorokiniana and Chlorella minutissima exhibit antioxidant potentials, inhibit cholinesterases and modulate disaggregation of β-amyloid fibrils. Electron J Biotechnol 40, 1–9. Doi: 10.1016/j.ejbt.2019.03.008
Onofrejová, L.; Vasícková, J.; Klejdus, B.; Stratil, P.; Misurcová, L.; Krácmar, S.; Kopecký, J. & Vacek, J. (2010). Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. J Pharmaceut Biomed 51 (1), 464-470. Doi: 10.1016/j.jpba.2009.03.027
Parisi, A. S.; Younes, S. & Reinehr, C. O. (2009). Avaliação da atividade antibacteriana da microalga Spirulina platensis. Ver Ciênc Farm Básica Apl 30(3), 297-301.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da Pesquisa Científica (free ebook). Santa Maria. RS.
Pires, J. C. M.; Alvim-Ferraz, M. C. M.; Martins, F. G. & Simões, M. (2013). Wastewater treatment to enhance the economic viability of microalgae culture. Environ Sci Pollut Res Int 20(1), 5096–5105. Doi: 10.1007/s11356-013-1791-x
Plaza, M. N.; Herrero, M.; Cifuentes, H. A. & Ibáñez, E. (2009). Innovative natural functional ingredients from microalgae. J Agric Food Chem 57(16), 7159–70. Doi: 10.1021/jf901070g.
Raposo, M. F. D. J. & Morais, A. M. M. B. (2015). Microalgae for the prevention of cardiovascular disease and stroke. Life Sci 125, 32–41. Doi: 10.1016/j.lfs.2014.09.018.
Ribeiro, D. M.; Zanetti, G. T.; Juliao, M. H. M.; Masetto, T. E.; Gelinski, J. M. L. N. & Fonseca, G. G. (2019). Effect of different culture media on growth of Chlorella sorokiniana and the influence of microalgal effluents on the germination of lettuce seeds. J Appl Biol Biotechnol 7(1), 6-10. Doi: 10.7324/JABB.2019.70102
Safafar, H.; Wagenen, J.; Moller, P. & Jacobsen, C. (2015). Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar Drugs 13, 7339–7356. Doi: 10.3390/md13127069
Scholz, B. & Liebezeit, G. (2012). Screening for biological activities and toxicological effects of 63 phytoplankton species isolated from freshwater, marine and brackish water habitats. Harmful Algae 20, 58–70. Doi: 10.1016/j.hal.2012.07.007
Shen, Y.; Zhu, W.; Li, H.; Ho, S.H.; Chen, J.; Xie, Y. & Shi, X. (2018). Enhancing cadmium bioremediation by a complex of water-hyacinth derived pellets immobilized with Chlorella sp. Bioresour Technol 257, 157-163. Doi: 10.1016/j.biortech.2018.02.060
Sipaúba-Tavares, L. H. & Rocha, O. (2003). Produção de plâncton (fitoplâncton e zooplâncton) para alimentação de organismos aquáticos,2 ed. São Carlos: RiMa 122p. 2p.
Skjånes, K.; Rebours, C. & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33(2), 172‐215. Doi: 10.3109/07388551.2012.681625
Stafford, H. A. (1991). Flavonoid evolution: an enzymic approach. J Plant Physiol 96, 680–685.
Sueoka, N. (1960). Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. Proc Natl Acad Sci 46 (1), 83-91. Doi: 10.1073/pnas.46.1.83.
Sutherland, D. L. & Ralph, P. J. (2019). Microalgal bioremediation of emerging contaminants-opportunities and challenges. Water Res 164, 114921. Doi: 10.1016/j.watres.2019.114921
Vendramini, A. L. A. & Trugo, L. C. (2004). Phenolic Compounds in Acerola Fruit (Malpighiapunicifolia, L.). J Brazil Chem Soc 15, 664-668.
Vijayavel, K.; Anbuselvam, C. & Balasubramanian, M. P. (2007). Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene-induced oxidative stress in the albino rats. Mol Cell Biochem 303 (1-2), 39‐44, 2007. Doi: 10.1007/s11010-007-9453-2.
Vizzoto, M. & Pereira, M. C. (2011). Amora-preta (rubussp.): otimização do processo de extração para determinação de compostos fenólicos antioxidantes. Ver Bras Frutic 33(4), 1209-1214. Doi: 10.1590/S0100-29452011000400020.
Wu, Y.H.; Yu, L.; Li, X.; Hu, H.Y. & Su, Z.F. (2012). Biomass production of a Scenedesmus sp. under phosphorous- starvation cultivation condition. Bioresour Technol 112, 193–198. Doi: 10.1016/j.biortech.2012.02.037
Zhang, Y.; Yang, L.; Zu, Y.; Chen, X.; Wang, F. & Liu, F. (2010). Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage. Food Chem 118(3), 656–662. Doi: 10.1016/j.foodchem.2009.05.038
Zhang, Y-M.; Chen, H.; He, C-L. & Wang, Q. (2013). Nitrogen Starvation Induced Oxidative Stress in an Oil-Producing Green Alga Chlorella sorokiniana C3. PLoS ONE 8(7). Doi: 10.1371/journal.pone.0069225
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Mônica Ansilago; Matheus Machado Ramos; Rosilda Mara Mussury; Emerson Machado de Carvalho
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.