Density and composition of the soil seed bank in a successional forest ecosystem in the Eastern Amazon, Brazil

Authors

DOI:

https://doi.org/10.33448/rsd-v10i6.15318

Keywords:

Cutting and burning system; Shifting cultivation; Secondary forests; Restoration trajectory.

Abstract

In the Amazon, itinerant agriculture guarantees the subsistence of traditional communities, but causes intense environmental impacts. Forest restoration with the monitoring of indicators such as the seed bank is essential, as it provides information on species viable for germination in ecosystem disturbance scenarios. We aim, therefore, to evaluate the composition and density of the seed bank of a successional forest in the Amazon, subjected to the manipulation of water and nutrients for 12 years. The collections were carried out at random, with the aid of a hollow sampler, in a forest fragment with three treatments (control - CTL, litter removal - REM and periodic irrigation - IRR). We found 684 individuals and 32 species. The density of individuals ranged from 820 ± 112 to 972 ± 394 ind m-2 for REM and CTL, while that of species ranged from 188 ± 48 to 216 ± 9.24 spp m-2 for CTL and REM, respectively. The bushes had the largest number of emergent individuals, and the vines, the smallest. The highest Shannon-Weanver and Pielou indices were observed in the CTL. The species Vismia guianensis, Cecropia obtusa and Cyperus rotundus were the most frequent in all treatments and the pioneer species predominated. The emergence speed of the REM treatment was lower than the CTL, while the average emergence time was similar between treatments. The composition and density of the seed bank were not affected by the residual effect of litter handling. Despite this, results were slightly higher for CTL treatment.

References

Almeida, A. M. de S. D., Oliveira, F. de A., Vasconcelos, S. S., Guimarães, J. R. da S., Tostes, L. de C. L., & Costa, J. V. T. A. (2019). Litter flux in a successional forest ecosystem under nutrient manipulation in Eastern Amazon. Brazilian Journal of Development, 5(12), 30623–30641. https://doi.org/10.34117/bjdv5n12-178

Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507

APG IV. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(16), 1–20.

Araujo, M. M., Oliveira, F. A., Vieira, I. C. G., Barros, P. L. C., & Lima, C. A. T. (2001). Densidade e composição florística do banco de sementes do solo de florestas sucessionais na região do Baixo Rio Guamá, Amazônia Oriental. (59), 115–130.

Arroyo-Kalin, M. (2012). Slash-burn-and-churn: Landscape history and crop cultivation in pre-Columbian Amazonia. Quaternary International, 249, 4–18. https://doi.org/10.1016/j.quaint.2011.08.004

Bordon, N. G., Nogueira, A., Leal Filho, N., & Higuchi, N. (2019). Blowdown disturbance effect on the density, richness and species composition of the seed bank in Central Amazonia. Forest Ecology and Management, 453(September), 117633. https://doi.org/10.1016/j.foreco.2019.117633

Bruun, T. B., Ryan, C. M., de Neergaard, A., & Berry, N. J. (2020). Soil organic carbon stocks maintained despite intensification of shifting cultivation. Geoderma, 388(May 2020), 114804. https://doi.org/10.1016/j.geoderma.2020.114804

Cardoso, D., Särkinen, T., Alexander, S., Amorim, A. M., Bittrich, V., Celis, M., … Forzza, R. C. (2017). Amazon plant diversity revealed by a taxonomically verified species list. Proceedings of the National Academy of Sciences of the United States of America, 114(40), 10695–10700. https://doi.org/10.1073/pnas.1706756114

Cramer, J. M., Mesquita, R. C. G., & Bruce Williamson, G. (2007). Forest fragmentation differentially affects seed dispersal of large and small-seeded tropical trees. Biological Conservation, 137(3), 415–423. https://doi.org/10.1016/j.biocon.2007.02.019

Fenner, M. (1985). Seed Ecology. https://doi.org/10.1007/978-94-009-4844-0

Flora do Brasil. (2020). Jardim Botânico do Rio de Janeiro. Retrieved January 14, 2020, from http://floradobrasil.jbrj.gov.br/reflora/PrincipalUC/PrincipalUC.do;jsessionid=4FB54800750F2BCD7C722A392151793B

Font-Quer, P. (1989). Diccionario de Botánica. Labor. Barcelona, 1244p.

Fragoso, R. de O., Carpanezzi, A. A., Zuffellato-Ribas, K. C., & Koehler, H. S. (2018). Seed Bank from Abandoned Pastures in the Coastal Region of Paraná. Floresta e Ambiente, 25(3), 1–11. https://doi.org/10.1590/2179-8087.029515

IBGE, Instituto Brasileiro de Geografia e Estatística. (2012). Manual técnico da vegetação brasileira. In Produção da Pecuária Municipal (2a, Vol. 39). https://doi.org/ISSN 0101-4234

INMET. (2019). Instituto Nacional de Meteorologia.

Jankowska-Błaszczuk, M., & Grubb, P. J. (2006). Changing perspectives on the role of the soil seed bank in northern temperate deciduous forests and in tropical lowland rain forests: parallels and contrasts. Perspectives in Plant Ecology, Evolution and Systematics, 8(1), 3–21. https://doi.org/10.1016/j.ppees.2006.06.001

Leal Filho, N., Sena, J. dos S., & Santos, G. R. (2005). Variações espaço-temporais no estoque de sementes do solo na floresta amazônica. Acta Amazonica, 43(3), 305–314.

Lima, T. T. S., Miranda, I. S., & Vasconcelos, S. S. (2010). Effects of water and nutrient availability on fine root growth in eastern Amazonian forest regrowth, Brazil. New Phytologist, 187(3), 622–630. https://doi.org/10.1111/j.1469-8137.2010.03299.x

Marichal, R., Grimaldi, M., Feijoo, M. A., Oszwald, J., Praxedes, C., Ruiz Cobo, D. H., … Lavelle, P. (2014). Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Applied Soil Ecology, 83, 177–185. https://doi.org/10.1016/j.apsoil.2014.05.006

Martins, A. C. M., Willig, M. R., Presley, S. J., & Marinho-Filho, J. (2017). Effects of forest height and vertical complexity on abundance and biodiversity of bats in Amazonia. Forest Ecology and Management, 391, 427–435. https://doi.org/10.1016/j.foreco.2017.02.039

Medeiros-Sarmento, P. S. de, Ferreira, L. V., & Gastauer, M. (2021). Natural regeneration triggers compositional and functional shifts in soil seed banks. Science of the Total Environment, 753, 141934. https://doi.org/10.1016/j.scitotenv.2020.141934

Odum, E. P., & Barrett, G. W. (1971). Fundamentals of Ecology. In Fundamentos de ecologia. https://doi.org/10.2307/3799291

Oliveira, B. da S. ., Carvalho, M. A. C. de;, Lange, A., Wruck, F. J. ., Dalacort, R., Silva, V. P. ., & Barea, M. (2017). Atributos físicos do solo em sistema de na região Amazônica Physical attributes of soil in system integration crop-livestock-. Spacios, 38(41), 1–8.

Peng, Y., Song, S. yi, Li, Z. yan, Li, S., Chen, G. tao, Hu, H. ling, … Tu, L. hua. (2020). Influences of nitrogen addition and aboveground litter-input manipulations on soil respiration and biochemical properties in a subtropical forest. Soil Biology and Biochemistry, 142, 107694. https://doi.org/10.1016/j.soilbio.2019.107694

Reyes, H. A., Ferreira, P. F. A., Silva, L. C., da Costa, M. G., Nobre, C. P., & Gehring, C. (2019). Arbuscular mycorrhizal fungi along secondary forest succession at the eastern periphery of Amazonia: Seasonal variability and impacts of soil fertility. Applied Soil Ecology, 136(August 2018), 1–10. https://doi.org/10.1016/j.apsoil.2018.12.013

Sayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews of the Cambridge Philosophical Society, 81(1), 1–31. https://doi.org/10.1017/S1464793105006846

Sousa, T. R., Costa, F. R. C., Bentos, T. V., Leal Filho, N., Mesquita, R. C. G., & Ribeiro, I. O. (2017). The effect of forest fragmentation on the soil seed bank of Central Amazonia. Forest Ecology and Management, 393, 105–112. https://doi.org/10.1016/j.foreco.2017.03.020

Souza, F. P., Rocha Martins, W. B., Rodrigues, R. P., Sales de Andrade, V. M., Arraes Araujo, N. N., & De Assis Oliveira, F. (2018). Soil seed banks in successional stages of forest ecosystems in the Belém, Pará, Brazil, metropolitan region. Revista Agro@Mbiente On-Line, 12(4), 314. https://doi.org/10.18227/1982-8470ragro.v12i4.4971

Subashree, K., Dar, J. A., Karuppusamy, S., & Sundarapandian, S. (2020). Plant diversity, structure and regeneration potential in tropical forests of Western Ghats, India. Acta Ecologica Sinica. https://doi.org/10.1016/j.chnaes.2020.02.004

Tenório, A. R. de M. et al. (1999). Mapeamento dos solos da estação de piscicultura de Castanhal, PA. FCAP. https://doi.org/10.5860/choice.41-2927.14.

Tormo, J., Amat, B., & Cortina, J. (2020). Litter as a filter for germination in semi-arid Stipa tenacissima steppes. Journal of Arid Environments, 183(July), 104258. https://doi.org/10.1016/j.jaridenv.2020.104258

van der Pijl, L. (1982). Principles of Dispersal in Higher Plants. In Principles of dispersal in higher plants. https://doi.org/10.1007/978-3-642-87925-8

Vandvik, V., Klanderud, K., Meineri, E., Måren, I. E., & Töpper, J. (2016). Seed banks are biodiversity reservoirs: Species-area relationships above versus below ground. Oikos, 125(2), 218–228. https://doi.org/10.1111/oik.02022

Vasconcelos, S. S., Zarin, D. J., Araújo, M. M., Rangel-Vasconcelos, L. G. T., De Carvalho, C. J. R., Staudhammer, C. L., & Oliveira, F. D. A. (2008). Effects of seasonality, litter removal and dry-season irrigation on litterfall quantity and quality in eastern Amazonian forest regrowth, Brazil. Journal of Tropical Ecology, 24(1), 27–38. https://doi.org/10.1017/S0266467407004580

Vasconcelos, S. S., Zarin, D. J., Rosa, M. B. S. da, Oliveira, F. de A., & Carvalho, C. J. R. de. (2007). Leaf Decomposition in a Dry Season Irrigation Experiment in Eastern Amazonian Forest Regrowth. Biotropica, 35(5), 593–600.

Villa, P. M., Martins, S. V., de Oliveira Neto, S. N., Rodrigues, A. C., Martorano, L. G., Monsanto, L. D., … Gastauer, M. (2018). Intensification of shifting cultivation reduces forest resilience in the northern Amazon. Forest Ecology and Management, 430(February), 312–320. https://doi.org/10.1016/j.foreco.2018.08.014

Vivanco, L., & Austin, A. T. (2019). The importance of macro- and micro-nutrients over climate for leaf litter decomposition and nutrient release in Patagonian temperate forests. Forest Ecology and Management, 441, 144–154. https://doi.org/10.1016/j.foreco.2019.03.019

Whitmore, T. C. (1991). Tropical rainforest dynamics and its implications for management. In Rainforest regeneration and management (pp. 67–87).

Zhao, Y., Li, M., Deng, J., & Wang, B. (2021). Afforestation affects soil seed banks by altering soil properties and understory plants on the eastern Loess Plateau, China. Ecological Indicators, 126, 107670. https://doi.org/10.1016/j.ecolind.2021.107670

Published

19/05/2021

How to Cite

ARAÚJO, E. A. A. .; RODRIGUES, J. I. de M.; MARTINS, W. B. R.; SANTOS JUNIOR, H. B. dos; RANGEL-VASCONCELOS, L. G. T.; OLIVEIRA, F. de A. Density and composition of the soil seed bank in a successional forest ecosystem in the Eastern Amazon, Brazil. Research, Society and Development, [S. l.], v. 10, n. 6, p. e23610615318, 2021. DOI: 10.33448/rsd-v10i6.15318. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15318. Acesso em: 21 jan. 2025.

Issue

Section

Agrarian and Biological Sciences