Hydrodynamic and thermal characterization of an Atlantic Forest

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.15398

Keywords:

BEST; Infiltration; De Vries model; Heat propagation.

Abstract

Soil hydrodynamic and thermal characterization are indispensable to support research related to the analysis of soil-plant-atmosphere interaction processes. Therefore, the objective was to carry out the hydrodynamic and thermal characterization of a soil that makes up a fragment of the Atlantic Forest, located in the Dois Irmãos neighborhood, in Recife, Pernambuco, Brazil. For this purpose, laboratory tests of granulometry and infiltration tests using a soil column. To obtain the hydrodynamic parameters, the Beerkan Estimation of Soil Transfer (BEST) methodology was followed, while the thermal properties of the soil were obtained from models proposed by De Vries (1963). After laboratory tests, the soil under analysis was classified as sandy loam. It was found that BEST provided coherent values for the shape and normalization parameters of the soil water retention and hydraulic conductivity curves. Regarding the thermal properties of the soil, a significant variation was observed with the increase in humidity, making it evident that water in the soil plays a determining role in the dynamics of heat propagation. The values of the hydrodynamic and thermal properties of the soil, provided by the different methods employed, were within the range established in the literature

References

NBR 7181. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (2016). Solo: análise granulométrica. Rio de Janeiro. 13 p.

NBR 13600. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (1996). Solo: Determinação do teor de matéria orgânica por queima a 440°C. Rio de Janeiro. 2 p.

Brooks, R. H. & Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Paper, Colorado.

Burdine, N. T. (1953). Relative permeability calculations from pore size distribution data. Journal of Petroleum Technology, 5(3), p. 71-78. http://dx.doi.org/10.2118/225-g

Carneiro, R. G., Moura, M. A., Silva, V. D. P., Silva Junior, R. S., Andrade, A. & Santos, A. B. D. (2014). Variabilidade da temperatura do solo em função da liteira em fragmento remanescente de mata atlântica. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(1), p. 99-108. http://dx.doi.org/10.1590/S1415-43662014000100013

Carvalho, S. P., Souza, J. R. S. & Makino, M. (2013). Observações e estimativas de propriedades térmicas do solo sob floresta e pastagem no leste da Amazônia. Revista Brasileira de Meteorologia, 28(3), p. 331-340. https://doi.org/10.1590/S0102-77862013000300009

Castellini, M., Di Prima, S., Moret-Fernández, D. & Lassabatere, L. (2021). Rapid and accurate measurement methods for determining soil hydraulic properties: A review. Journal of Hydrology and Hydromechanics, 69, p. 1-19. https://doi.org/0.2478/johh-2021-0002

De Vries, D. A. (1963). Thermal Properties of Soil. In van Wijk, W. R (Ed.), Physics of Plant Environment (pp. 210-233) Amsterdam: North Holland.

Ewing, R. & Horton, R. (2007). Thermal conductivity of a cubic lattice of spheres with capillary bridges. Journal of Physics: Applied Physics, 40(16), p. 4959-4965. https://doi.org/10.1088/0022-3727/40/16/031

Freitas, J. P. O. D., Dias, H. C. T., Barroso, T. H. A. & Poyares, L. D. B. Q. (2013). Distribuição da água de chuva em Mata Atlântica. Revista Ambiente & Água, 8(2), p. 100-108. https://doi.org/10.4136/ambi-agua.1141

Haverkamp, R., Ross, P. J., Smettem, K. R. J. & Parlange, J. Y. (1994). Three-dimensional analysis of infiltration from the disc infiltrometer. 2. Physically based infiltration equation. Water Resources Research, 30, p. 2931-2935. https://doi.org/10.1029/94WR01788

Hillel, D. (1998). Environmental soil physics. New York: Academic Press, 771p.

Kelleners, T. J., Koonce, J., Shillito, R., Dijkema, J., Berli, M., Young, M. H., Frank, J. M. & Massman, W. J. (2016). Numerical modeling of coupled water flow and heat transport in soil and snow. Soil Science Society of America Journal, 80(2), p. 247–263. https://doi.org/10.2136/sssaj2015.07.0279

Lassabatère, L., Angulo-Jaramillo, R., Soria, J. M., Cuenca, R., Braud, I. & Haverkamp, R. (2006). Beerkan estimation of soil transfer parameters through infiltration experiments - BEST. Soil Science Society of America Journal, 70, p. 521-532. https://doi.org/10.2136/sssaj2005.0026

Lima, M. S. D., Freire, F. J., Marangon, L. C., Almeida, B. G. D., Ribeiro, E. P. & Santos, R. L. D. (2018). Solos florestais em fragmento de floresta urbana na Mata de Dois Irmãos, Recife, Pernambuco, Brasil. Ciência Florestal, 28(2), p. 542-553. https://doi.org/10.5902/1980509832037

Macêdo, G. & Soares, W. (2020). Utilização de métodos de campo e laboratoriais para estimação de propriedades hidrodinâmicas do solo. Águas Subterrâneas, 34(2), p. 166-176. https://doi.org/10.14295/ras.v34i2.29809

Sales, E. G. (2015). Impacto das Culturas da Cana-de-Açúcar e do Abacaxi nas Propriedades Hidrodinâmicas do Solo da Bacia do Rio Gramame-PB. Águas Subterrâneas, 27(3).

Santana, R. O., Delgado, R. C. & Schiavetti, A. (2020). The past, present and future of vegetation in the Central Atlantic Forest Corridor, Brazil. Remote Sensing Applications: Society and Environment, 20, e100357. https://doi.org/10.1016/j.foreco.2019.117591

Teixeira, P. C., Donagemma, G. K., Fontana, A. & Teixeira, W. G. (2017). Manual de métodos de análise de solo - 3rd ed. Embrapa Solos, Brasília – DF, 573 p.

Tian, Z., Lu, Y., Horton, R. & Ren, T. (2016). A simplified de Vries-based model to estimate thermal conductivity of unfrozen and frozen soil. European Journal of Soil Science, 67(5), p. 564-572. https://doi.org/10.1111/ejss.12366

Van Genuchten, M. T. (1980). A closed-form equation for predicting the conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), p. 892-897. https://doi.org/10.2136/sssaj1980.03615995004400050002x

Zhao, Y. & Si, B. (2019). Thermal properties of sandy and peat soils under unfrozen and frozen conditions. Soil and Tillage Research, 189, p. 64-72. https://doi.org/10.1016/j.still.2018.12.026

Zhao, Y., Si, B., Zhang, Z., Li, M., He, H. & Hill, R. L. (2019). A new termal conductivity model for sandy and peat soils. Agricultural and Forest Meteorology, 274, p. 95-105. https://doi.org/10.1016/j.agrformet.2019.04.004

Published

16/05/2021

How to Cite

CAVALCANTI, A. R. .; SOARES, W. de A. .; HOLANDA, M. A. C. R. de . Hydrodynamic and thermal characterization of an Atlantic Forest . Research, Society and Development, [S. l.], v. 10, n. 5, p. e54910515398, 2021. DOI: 10.33448/rsd-v10i5.15398. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15398. Acesso em: 22 nov. 2024.

Issue

Section

Agrarian and Biological Sciences