Hydrodynamic and thermal characterization of an Atlantic Forest
DOI:
https://doi.org/10.33448/rsd-v10i5.15398Keywords:
BEST; Infiltration; De Vries model; Heat propagation.Abstract
Soil hydrodynamic and thermal characterization are indispensable to support research related to the analysis of soil-plant-atmosphere interaction processes. Therefore, the objective was to carry out the hydrodynamic and thermal characterization of a soil that makes up a fragment of the Atlantic Forest, located in the Dois Irmãos neighborhood, in Recife, Pernambuco, Brazil. For this purpose, laboratory tests of granulometry and infiltration tests using a soil column. To obtain the hydrodynamic parameters, the Beerkan Estimation of Soil Transfer (BEST) methodology was followed, while the thermal properties of the soil were obtained from models proposed by De Vries (1963). After laboratory tests, the soil under analysis was classified as sandy loam. It was found that BEST provided coherent values for the shape and normalization parameters of the soil water retention and hydraulic conductivity curves. Regarding the thermal properties of the soil, a significant variation was observed with the increase in humidity, making it evident that water in the soil plays a determining role in the dynamics of heat propagation. The values of the hydrodynamic and thermal properties of the soil, provided by the different methods employed, were within the range established in the literature
References
NBR 7181. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (2016). Solo: análise granulométrica. Rio de Janeiro. 13 p.
NBR 13600. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (1996). Solo: Determinação do teor de matéria orgânica por queima a 440°C. Rio de Janeiro. 2 p.
Brooks, R. H. & Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Paper, Colorado.
Burdine, N. T. (1953). Relative permeability calculations from pore size distribution data. Journal of Petroleum Technology, 5(3), p. 71-78. http://dx.doi.org/10.2118/225-g
Carneiro, R. G., Moura, M. A., Silva, V. D. P., Silva Junior, R. S., Andrade, A. & Santos, A. B. D. (2014). Variabilidade da temperatura do solo em função da liteira em fragmento remanescente de mata atlântica. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(1), p. 99-108. http://dx.doi.org/10.1590/S1415-43662014000100013
Carvalho, S. P., Souza, J. R. S. & Makino, M. (2013). Observações e estimativas de propriedades térmicas do solo sob floresta e pastagem no leste da Amazônia. Revista Brasileira de Meteorologia, 28(3), p. 331-340. https://doi.org/10.1590/S0102-77862013000300009
Castellini, M., Di Prima, S., Moret-Fernández, D. & Lassabatere, L. (2021). Rapid and accurate measurement methods for determining soil hydraulic properties: A review. Journal of Hydrology and Hydromechanics, 69, p. 1-19. https://doi.org/0.2478/johh-2021-0002
De Vries, D. A. (1963). Thermal Properties of Soil. In van Wijk, W. R (Ed.), Physics of Plant Environment (pp. 210-233) Amsterdam: North Holland.
Ewing, R. & Horton, R. (2007). Thermal conductivity of a cubic lattice of spheres with capillary bridges. Journal of Physics: Applied Physics, 40(16), p. 4959-4965. https://doi.org/10.1088/0022-3727/40/16/031
Freitas, J. P. O. D., Dias, H. C. T., Barroso, T. H. A. & Poyares, L. D. B. Q. (2013). Distribuição da água de chuva em Mata Atlântica. Revista Ambiente & Água, 8(2), p. 100-108. https://doi.org/10.4136/ambi-agua.1141
Haverkamp, R., Ross, P. J., Smettem, K. R. J. & Parlange, J. Y. (1994). Three-dimensional analysis of infiltration from the disc infiltrometer. 2. Physically based infiltration equation. Water Resources Research, 30, p. 2931-2935. https://doi.org/10.1029/94WR01788
Hillel, D. (1998). Environmental soil physics. New York: Academic Press, 771p.
Kelleners, T. J., Koonce, J., Shillito, R., Dijkema, J., Berli, M., Young, M. H., Frank, J. M. & Massman, W. J. (2016). Numerical modeling of coupled water flow and heat transport in soil and snow. Soil Science Society of America Journal, 80(2), p. 247–263. https://doi.org/10.2136/sssaj2015.07.0279
Lassabatère, L., Angulo-Jaramillo, R., Soria, J. M., Cuenca, R., Braud, I. & Haverkamp, R. (2006). Beerkan estimation of soil transfer parameters through infiltration experiments - BEST. Soil Science Society of America Journal, 70, p. 521-532. https://doi.org/10.2136/sssaj2005.0026
Lima, M. S. D., Freire, F. J., Marangon, L. C., Almeida, B. G. D., Ribeiro, E. P. & Santos, R. L. D. (2018). Solos florestais em fragmento de floresta urbana na Mata de Dois Irmãos, Recife, Pernambuco, Brasil. Ciência Florestal, 28(2), p. 542-553. https://doi.org/10.5902/1980509832037
Macêdo, G. & Soares, W. (2020). Utilização de métodos de campo e laboratoriais para estimação de propriedades hidrodinâmicas do solo. Águas Subterrâneas, 34(2), p. 166-176. https://doi.org/10.14295/ras.v34i2.29809
Sales, E. G. (2015). Impacto das Culturas da Cana-de-Açúcar e do Abacaxi nas Propriedades Hidrodinâmicas do Solo da Bacia do Rio Gramame-PB. Águas Subterrâneas, 27(3).
Santana, R. O., Delgado, R. C. & Schiavetti, A. (2020). The past, present and future of vegetation in the Central Atlantic Forest Corridor, Brazil. Remote Sensing Applications: Society and Environment, 20, e100357. https://doi.org/10.1016/j.foreco.2019.117591
Teixeira, P. C., Donagemma, G. K., Fontana, A. & Teixeira, W. G. (2017). Manual de métodos de análise de solo - 3rd ed. Embrapa Solos, Brasília – DF, 573 p.
Tian, Z., Lu, Y., Horton, R. & Ren, T. (2016). A simplified de Vries-based model to estimate thermal conductivity of unfrozen and frozen soil. European Journal of Soil Science, 67(5), p. 564-572. https://doi.org/10.1111/ejss.12366
Van Genuchten, M. T. (1980). A closed-form equation for predicting the conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), p. 892-897. https://doi.org/10.2136/sssaj1980.03615995004400050002x
Zhao, Y. & Si, B. (2019). Thermal properties of sandy and peat soils under unfrozen and frozen conditions. Soil and Tillage Research, 189, p. 64-72. https://doi.org/10.1016/j.still.2018.12.026
Zhao, Y., Si, B., Zhang, Z., Li, M., He, H. & Hill, R. L. (2019). A new termal conductivity model for sandy and peat soils. Agricultural and Forest Meteorology, 274, p. 95-105. https://doi.org/10.1016/j.agrformet.2019.04.004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ariela Rocha Cavalcanti; Willames de Albuquerque Soares; Marco Aurélio Calixto Ribeiro de Holanda
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.