In vitro virulence evaluation of clinical and environmental isolates of dermatophyte fungi




Dermatophytosis; Dermatopathy; Tinea; Pathogenicity; Environmental mycology.


Dermatophytes are keratinophilic fungi and the causative agent of dermatophytosis in animals and people. In the pathogenesis of this disease, enzymes such as DNase, gelatinase, lipase, keratinase, elastase, and collagenase are highlighted. This work aimed to verify the production of these enzymes by clinical and environmental isolates of dermatophytes. Environmental strains were obtained by the Vanbreuseghem technique (1952), using soil samples from different Brazilian locations. The clinical samples were obtained from animal hair and crust sent to the Veterinary Microbiological Diagnostic Service/UFRRJ. The enzymatic evaluation of the dermatophytes was made by spectrophotometer absorbance readings (collagenase, elastase, and keratinase), degradation halo formation in Petri dishes (DNase and lipase) and tube liquefaction (gelatinase). The clinical isolates were Microsporum canis (11), Nannizzia gypsea (7), N. nana (2), Trichophyton mentagrophytes (4) and Trichophyton sp. (6). The environmental isolates were N. gypsea (25), N. nana (1) and Trichophyton sp. (4). There was no statistically significant difference in keratinase, elastase, lipase and gelatinase production between the clinical and environmental isolates groups. There was a statistically significant difference in collagenase and DNase production. It is concluded that both clinical and soil samples are capable of producing enzymes related to dermatophyte infection.


Apodaca, G., & McKerrow, J .H. (1990). Expression of proteolytic activity by cultures of Trichophyton rubrum. Journal of Medical and Veterinary Mycology, 28(2), 159-171.

Cafarchia, C., Figueredo, L. A., Coccioli, C. et al. (2012). Enzymatic activity of Microsporum canis and Trichophyton mentagrophytes from breeding rabbits with and without skin lesions. Mycoses, 55(1), 45-9.

Chakraborty, R., & Chandra, A. L. (1986). Purification and characterization of a streptomycete collagenase. Journal of Applied Bacteriology, 61(4), 331-7.

Cortezi, M. (2009). Isolamento de microrganismos produtores de queratinase: estudo da biodegradação da queratina oriunda de penas de abatedouro de frangos. 2009. 127 p. Tese (Doutorado em Ciências Biógicas, Microbiologia Aplicada) UNESP, Instituto de Biociências, Rio Claro, São Paulo.

Da Silva, B. C. M., Auler, M. E., Ruiz, L. D. S. et al. (2005). Trichophyton rubrum isolated from AIDS and human immunodeficiency virus-infected patients in São Paulo, Brazil: antifungal susceptibility and extracellular enzyme production. Chemotherapy, 51(1), 21-6.

De Hoog, G., Dukik, K., Monod, M. et al. (2017). Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia, 182(1-2), 5-31.

De Hoog, G. S., Guarro, J., Gené, J., & Figueras, M. J. (2000). Atlas of clinical fungi. Utrecht, The Netherlands: Centraalbureau voor Schimmelcultures.

Elavarashi, E., Kindo, A. J., & Rangarajan, S. (2017). Enzymatic and non-enzymatic virulence activities of dermatophytes on solid media. Journal of clinical and diagnostic research: JCDR, 11(2), DC23.

Giudice, M. C., Reis-Menezes, A. A., Rittner, G. M. G. et al. (2012). Isolation of Microsporum gypseum in soil samples from different geographical regions of Brazil, evaluation of the extracellular proteolytic enzymes activities (keratinase and elastase) and molecular sequencing of selected strains. Brazilian Journal of Microbiology, 43(3), 895-902.

Gnat, S., Łagowski, D., Nowakiewicz, A., & Zięba, P. (2018). Phenotypic characterization of enzymatic activity of clinical dermatophyte isolates from animals with and without skin lesions and humans. Journal of applied microbiology, 125(3), 700-9.

Hellgren, L., & Vincent, J. (1980). Lipolytic activity of some dermatophytes. Journal of medical microbiology, 13(1), 155-7.

Hellgren, L., & Vincent, J. (1981). Lipolytic activity of some dermatophytes. Journal of medical microbiology, 14(1), 347-350.

Ibrahim-Granet, O., Hernandez, F. H., Chevrier, G., & Dupont, B. (1996). Expression of PZ-peptidases by cultures of several pathogenic fungi. Purification and characterization of a collagenase from Trichophyton schoenleinii. Journal of medical and veterinary mycology, 34(2), 83-90.

Kaplan, E., Gonca, S., Kandemir. et al. (2020). Genes encoding proteolytic enzymes fungalysin and subtilisin in dermatophytes of human and animal origin: a comparative study. Mycopathologia, 185(1), 137-144.

Koneman, E., Winn, J. R. W., Allen, S. et al. (2008). Diagnóstico microbiológico: texto e atlas colorido. Rio de Janeiro, Brazil: MEDSI.

Long, S., Carveth, H., Chang, Y. M., O'Neill, D., & Bond, R. (2020). Isolation of dermatophytes from dogs and cats in the South of England between 1991 and 2017. Veterinary Record, 187(10), e87.

López-Martínez, R., Manzano-Gayosso, P., Mier, T. et al. (1994). Exoenzymes of dermatophytes isolated from acute and chronic tinea. Revista latinoamericana de microbiologia, 36(1), 17-20.

Markey, B., Leonard, F., Archambault, M. et al. (2013). Clinical veterinary microbiology. London, England: Elsevier Health Sciences.

Meevootisom, V., & Niederpruem, D.J. (1979). Control of exocellular proteases in dermatophytes and especially Trichophyton rubrum. Sabouraudia: Journal of Medical and Veterinary Mycology, 17(2), 91-106.

Monodi, M. (2008). Secreted proteases from dermatophytes. Mycopathologia, 166(5-6), 285.

Pontes, Z. B. V. S., Oliveira, A. C. D., Guerra, F. Q. S. et al. (2013). Distribution of dermatophytes from soils of urban and rural areas of cities of Paraiba state, Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 55(6), 377-383.

Price, M. F., Wilkinson, I. D., & GENTRY, L. O. (1982). Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia: Journal of Medical and Veterinary Mycology, 20(1), 7-14.

Rippon, J. W. (1968). Extracellular collagenase from Trichophyton schoenleinii. Journal of bacteriology, 95(1), 43-6.

Rippon, J. W., & Varadi, D. P. (1968). The elastases of pathogenic fungi and actinomycetes. Journal of Investigative Dermatology, 50(1), 54-8.

Sharma, A., Chandra, S., & Sharma, M. (2012). Difference in keratinase activity of dermatophytes at different environmental conditions is an attribute of adaptation to parasitism. Mycoses, 55(5), 410-5.

Sharma, A. K., Negi, S., Sharma, V., & Saxena, J. (2017). Isolation and Screening of Protease Producing Soil Fungi. Advance Pharmaceutical Journal, 2(3), 100-4.

Siesenop, U., & Böhm, K. H. (1995). Comparative studies on keratinase production of Trichophyton mentagrophytes strains of animal origin. Mycoses, 38(5‐6), 205-9.

Söderling, E., & Paunio, K. U. (1981). Conditions of production and properties of the collagenolytic enzymes by two Bacillus strains from dental plaque. Journal of Periodontal Research, 16(5), 513.

Taghipour, S., Abastabar, M., Piri, F. et al. (2021). Diversity of Geophilic Dermatophytes Species in the Soils of Iran; The Significant Preponderance of Nannizzia fulva. Journal of Fungi, 7(5), 345.

Uribe, M. P., & Cardona-Castro, N. (2013). Mecanismos de adherencia e invasión de dermatofitos a la piel. CES Medicina, 27(1), 67-76.

Vanbreuseghem, R. (1952). Tecnique Biologique Pour l’isolement dês Dermatophytes du Sol. Annales de la Société Belge de Médicine Tropicale, Antwerp, 32, 173-8.

Vermout, S., Tabart, J., Baldo, A. et al. (2008). Pathogenesis of dermatophytosis. Mycopathologia, 166(5-6), 267.

Viani, F. C., Santos, J. D., Paula, C. R. et al. (2001). Production of extracellular enzymes by Microsporum canis and their role in its virulence. Medical Mycology, 39(5), 463-8.




How to Cite

BONCI, M. M.; MAKITA, M. T.; MENDES, C. de A.; ABREU, D. P. B. de; RIBEIRO, L. V.; DUARTE, G. A. B.; CAMPOS, S. G. de; PAULA, C. R.; BARONI, F. de A. In vitro virulence evaluation of clinical and environmental isolates of dermatophyte fungi. Research, Society and Development, [S. l.], v. 10, n. 6, p. e21110615699, 2021. DOI: 10.33448/rsd-v10i6.15699. Disponível em: Acesso em: 14 jun. 2024.



Health Sciences