New drug delivery systems, technological use and repositioning of chloroquine and hydroxychloroquine: An integrative review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i7.16589

Keywords:

Drug delivery system; Chloroquine; Hydroxychloroquine; Repositiong; Malaria; Gene therapy; Anticancer therapy.

Abstract

Chloroquine (CQ) and Hydroxychloroquine (HCQ) have been used historically to treat various conditions that differ from their original medical indication. In addition to their use as antimalarials, these drugs are used to treat autoimmune disorders and have recently gained attention due to in silico and in vitro evidence of their activity against SARS-CoV-2, a fact that has boosted their use rushedly in the treatment of COVID-19. The present study aimed to highlight the advances in research related to the repositioning of CQ and HCQ, their use as adjuvant therapy for treating other pathologies, and the development of new drug delivery systems. A search was performed in PubMed, Science Direct, and Web of Science using the keywords chloroquine, hydroxychloroquine, formulation and repositioning. Articles published in English from 2010 to 2020 that presented CQ or HCQ in the treatment of diseases or as components of formulations and distribution systems were included in the review. We obtained 788 articles, of which 69 were included in the study after screening and refining the search. According to the technological or clinical use of CQ and HCQ, these articles were categorized into four thematic groups: malaria, gene therapy, anticancer therapy, and immune-based diseases. In addition to studies on drug repositioning, we can highlight the articles with proposals for new formulations and drug delivery systems for conditions already treated with such molecules, with a particular focus on overcoming mechanisms of therapeutic resistance.

Author Biography

André Luis Menezes Carvalho, Universidade Federal do Piauí

Docente dos Programas de Pós-Graduação em Ciências Farmacêuticas (PPGCF) e em Odontologia (PPGO) da Universidade Federal do Piauí - UFPI

References

Alfrd Mavondo, G. A., & Tagumirwa, M. C. (2016). Asiatic acid-pectin hydrogel matrix patch transdermal delivery system influences parasitaemia suppression and inflammation reduction in P. berghei murine malaria infected Sprague–Dawley rats. Asian Pacific Journal of Tropical Medicine, 9(12), 1172–1180. https://doi.org/10.1016/j.apjtm.2016.10.008

Alshehri, A., Grabowska, A., & Stolnik, S. (2018). Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-22166-3

Baruah, U. K., Gowthamarajan, K., Ravisankar, V., Karri, V. V. S. R., Simhadri, P. K., & Singh, V. (2018). Optimisation of chloroquine phosphate loaded nanostructured lipid carriers using Box–Behnken design and its antimalarial efficacy. Journal of Drug Targeting, 26(7), 576–591. https://doi.org/10.1080/1061186X.2017.1390671

Bendas, E. R., Abdullah, H., El-Komy, M. H. M., & Kassem, M. A. A. (2013). Hydroxychloroquine niosomes: A new trend in topical management of oral lichen planus. International Journal of Pharmaceutics, 458(2), 287–295. https://doi.org/10.1016/j.ijpharm.2013.10.042

Bhalekar, M. R., Upadhaya, P. G., & Madgulkar, A. R. (2016). Fabrication and efficacy evaluation of chloroquine nanoparticles in CFA-induced arthritic rats using TNF-α ELISA. European Journal of Pharmaceutical Sciences, 84, 1–8. https://doi.org/10.1016/j.ejps.2016.01.009

Bibi, N., Gul, S., Ali, J., & Kamal, M. A. (2020). Viroinformatics approach to explore the inhibitory mechanism of existing drugs repurposed to fight against COVID-19. European Journal of Pharmacology, 173496. https://doi.org/10.1016/j.ejphar.2020.173496

Boyle, W. S., Twaroski, K., Woska, E. C., Tolar, J., & Reineke, T. M. (2019). Molecular Additives Significantly Enhance Glycopolymer-Mediated Transfection of Large Plasmids and Functional CRISPR-Cas9 Transcription Activation Ex Vivo in Primary Human Fibroblasts and Induced Pluripotent Stem Cells. Bioconjugate Chemistry, 30(2), 418–431. https://doi.org/10.1021/acs.bioconjchem.8b00760

Capel, R. A., Herring, N., Kalla, M., Yavari, A., Mirams, G. R., Douglas, G., Bub, G., Channon, K., Paterson, D. J., Terrar, D. A., & Burton, R. A. B. (2015). Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current If: Novel electrophysiological insights and therapeutic potential. Heart Rhythm, 12(10), 2186–2194. https://doi.org/10.1016/j.hrthm.2015.05.027

Cassidy, C., Dever, D., Stanbery, L., Edelman, G., Dworkin, L., & Nemunaitis, J. (2020). FDA efficiency for approval process of COVID-19 therapeutics. Infectious Agents and Cancer, 15(1), 73. https://doi.org/10.1186/s13027-020-00338-z

Catalano, R., Rocca, R., Juli, G., Costa, G., Maruca, A., Artese, A., Caracciolo, D., Tagliaferri, P., Alcaro, S., Tassone, P., & Amodio, N. (2019). A drug repurposing screening reveals a novel epigenetic activity of hydroxychloroquine. European Journal of Medicinal Chemistry, 183. https://doi.org/10.1016/j.ejmech.2019.111715

Cavalcanti, A. B., Zampieri, F. G., Rosa, R. G., Azevedo, L. C. P., Veiga, V. C., Avezum, A., Damiani, L. P., Marcadenti, A., Kawano-Dourado, L., Lisboa, T., Junqueira, D. L. M., de Barros e Silva, P. G. M., Tramujas, L., Abreu-Silva, E. O., Laranjeira, L. N., Soares, A. T., Echenique, L. S., Pereira, A. J., Freitas, F. G. R., … Berwanger, O. (2020). Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. New England Journal of Medicine, 383(21), 2041–2052. https://doi.org/10.1056/NEJMoa2019014

Chang, C. T., Korivi, M., Huang, H. C., Thiyagarajan, V., Lin, K. Y., Huang, P. J., Liu, J. Y., Hseu, Y. C., & Yang, H. L. (2017). Inhibition of ROS production, autophagy or apoptosis signaling reversed the anticancer properties of Antrodia salmonea in triple-negative breast cancer (MDA-MB-231) cells. Food and Chemical Toxicology, 103, 1–17. https://doi.org/10.1016/j.fct.2017.02.019

Chatre, C., Roubille, F., Vernhet, H., Jorgensen, C., & Pers, Y.-M. (2018). Cardiac Complications Attributed to Chloroquine and Hydroxychloroquine: A Systematic Review of the Literature. Drug Safety, 41(10), 919–931. https://doi.org/10.1007/s40264-018-0689-4

Chen, Y., Traore, Y. L., Li, A., Fowke, K. R., & Ho, E. A. (2014). Development of polyether urethane intravaginal rings for the sustained delivery of hydroxychloroquine. Drug Design, Development and Therapy, 8, 1801–1815. https://doi.org/10.2147/DDDT.S71352

Chen, Y., Traore, Y. L., Yang, S., Lajoie, J., Fowke, K. R., Rickey, D. W., & Ho, E. A. (2018). Implant delivering hydroxychloroquine attenuates vaginal T lymphocyte activation and inflammation. Journal of Controlled Release, 277(March), 102–113. https://doi.org/10.1016/j.jconrel.2018.03.010

Choi, E., Lim, D. K., & Kim, S. (2020). Calcium-doped mesoporous silica nanoparticles as a lysosomolytic nanocarrier for amine-free loading and cytosolic delivery of siRNA. Journal of Industrial and Engineering Chemistry, 81, 71–80. https://doi.org/10.1016/j.jiec.2019.08.054

Coma-Cros, E. M., Biosca, A., Marques, J., Carol, L., Urbán, P., Berenguer, D., Riera, M. C., Delves, M., Sinden, R. E., Valle-Delgado, J. J., Spanos, L., Siden-Kiamos, I., Pérez, P., Paaijmans, K., Rottmann, M., Manfredi, A., Ferruti, P., Ranucci, E., & Fernàndez-Busquets, X. (2018). Polyamidoamine nanoparticles for the oral administration of antimalarial drugs. Pharmaceutics, 10(4), 1–20. https://doi.org/10.3390/pharmaceutics10040225

Deng, J., Wen, Y., Wang, C., Pan, S., Gu, H., Zeng, X., Han, L., Zhao, Y., Feng, M., & Wu, C. (2011). Efficient intracellular gene delivery using the formulation composed of poly (L-glutamic acid) grafted polyethylenimine and histone. Pharmaceutical Research, 28(4), 812–826. https://doi.org/10.1007/s11095-010-0335-z

dos Reis Neto, E. T., Kakehasi, A. M., de Medeiros Pinheiro, M., Ferreira, G. A., Marques, C. D. L., da Mota, L. M. H., dos Santos Paiva, E., Pileggi, G. C. S., Sato, E. I., Reis, A. P. M. G., Xavier, R. M., & Provenza, J. R. (2020). Revisiting hydroxychloroquine and chloroquine for patients with chronic immunity-mediated inflammatory rheumatic diseases. Advances in Rheumatology, 60(1), 32. https://doi.org/10.1186/s42358-020-00134-8

Elshazly, E. H., Zhang, S., Yu, L., Zhang, Y., Ke, L., & Gong, R. (2020). Hydroxychloroquine enhances anticancer effect of DOX/folate-phytosterol-carboxymethyl cellulose nanoparticles in A549 lung cancer cells. Tropical Journal of Pharmaceutical Research, 19(2), 219–225. https://doi.org/10.4314/tjpr.v19i2.1

Fotoran, W. L., Müntefering, T., Kleiber, N., Miranda, B. N. M., Liebau, E., Irvine, D. J., & Wunderlich, G. (2019). A multilamellar nanoliposome stabilized by interlayer hydrogen bonds increases antimalarial drug efficacy. Nanomedicine: Nanotechnology, Biology, and Medicine, 22. https://doi.org/10.1016/j.nano.2019.102099

Garuzi, M., Achitti, M. C. D. O., Sato, C. A., Rocha, S. A., & Spagnuolo, R. S. (2014). Acolhimento na Estratégia Saúde da Família: revisão integrativa. Revista Panamericana de Salud Publica, 35, 144-149.

Gautret, P., Lagier, J. C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V. E., Tissot Dupont, H., Honoré, S., Colson, P., Chabrière, E., La Scola, B., Rolain, J. M., Brouqui, P., & Raoult, D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 56(1). https://doi.org/10.1016/j.ijantimicag.2020.105949

Gonçalves, G. A. R., & Paiva, R. de M. A. (2017). Gene therapy: Advances, challenges and perspectives. Einstein (São Paulo), 15(3), 369–375. https://doi.org/10.1590/s1679-45082017rb4024

Horby, P., Mafham, M., Linsell, L., Phil, D., Bell, J. L., Staplin, N., Emberson, J.-T. R., Wiselka, M., Ustianowski, A., Elmahi, E., Phil, M., Prudon, B., Whitehouse, T., Fel-Ton, T., Williams, J., Faccenda, J., Underwood, J., Kenneth Baillie, J., Chappell, L. C., … Landray, M. J. (2020). Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. New England Journal of Medicine, 383(21), 2030–2040. https://doi.org/10.1056/NEJMoa2022926

Hou, X., Yang, C., Zhang, L., Hu, T., Sun, D., Cao, H., Yang, F., Guo, G., Gong, C., Zhang, X., Tong, A., Li, R., & Zheng, Y. (2017). Killing colon cancer cells through PCD pathways by a novel hyaluronic acid-modified shell-core nanoparticle loaded with RIP3 in combination with chloroquine. Biomaterials, 124, 195–210. https://doi.org/10.1016/j.biomaterials.2016.12.032

Hu, T., Li, P., Luo, Z., Chen, X., Zhang, J., Wang, C., Chen, P., & Dong, Z. (2016). Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo. Oncology Reports, 35(1), 43–49. https://doi.org/10.3892/or.2015.4380

Joshi, P., Chakraborti, S., Ramirez-Vick, J. E., Ansari, Z. A., Shanker, V., Chakrabarti, P., & Singh, S. P. (2012). The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids and Surfaces B: Biointerfaces, 95, 195–200. https://doi.org/10.1016/j.colsurfb.2012.02.039

Joshi, P., Chakraborty, S., Dey, S., Shanker, V., Ansari, Z. A., Singh, S. P., & Chakrabarti, P. (2011). Binding of chloroquine-conjugated gold nanoparticles with bovine serum albumin. Journal of Colloid and Interface Science, 355(2), 402–409. https://doi.org/10.1016/j.jcis.2010.12.032

Juang, V., Lee, H. P., Lin, A. M. Y., & Lo, Y. L. (2016). Cationic PEGylated liposomes incorporating an antimicrobial peptide tilapia hepcidin 2–3: An adjuvant of epirubicin to overcome multidrug resistance in cervical cancer cells. International Journal of Nanomedicine, 11, 6047–6064. https://doi.org/10.2147/IJN.S117618

Kanvinde, S., Chhonker, Y. S., Ahmad, R., Yu, F., Sleightholm, R., Tang, W., Jaramillo, L., Chen, Y., Sheinin, Y., Li, J., Murry, D. J., Singh, A. B., & Oupický, D. (2018). Pharmacokinetics and efficacy of orally administered polymeric chloroquine as macromolecular drug in the treatment of inflammatory bowel disease. Acta Biomaterialia, 82, 158–170. https://doi.org/10.1016/j.actbio.2018.10.027

Kashyap, A., Kaur, R., Baldi, A., Jain, U. K., Chandra, R., & Madan, J. (2018). Chloroquine diphosphate bearing dextran nanoparticles augmented drug delivery and overwhelmed drug resistance in Plasmodium falciparum parasites. International Journal of Biological Macromolecules, 114, 161–168. https://doi.org/10.1016/j.ijbiomac.2018.03.102

Kay, M. A., Glorioso, J. C., & Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature Medicine. 2001;7:33–40

Kivrak, A., Ulaş, B., & Kivrak, H. (2021). A comparative analysis for anti-viral drugs: Their efficiency against SARS-CoV-2. International Immunopharmacology, 90, 107232. https://doi.org/10.1016/j.intimp.2020.107232

Kumar, R., Sharma, A., Srivastava, J. K., Siddiqui, M. H., Uddin, M. S., & Aleya, L. (2021). Hydroxychloroquine in COVID-19: therapeutic promises, current status, and environmental implications. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-12200-1

Liu, J., Liu, X., Han, Y., Zhang, J., Liu, D., Ma, G., Li, C., Liu, L., & Kong, D. (2018). Nanovaccine Incorporated with Hydroxychloroquine Enhances Antigen Cross-Presentation and Promotes Antitumor Immune Responses. ACS Applied Materials & Interfaces, 10(37), 30983–30993. https://doi.org/10.1021/acsami.8b09348

Lv, T., Li, Z., Xu, L., Zhang, Y., Chen, H., & Gao, Y. (2018). Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer. Acta Biomaterialia, 76, 257–274. https://doi.org/10.1016/j.actbio.2018.06.034

Magalhães, G. A., Moura Neto, E., Sombra, V. G., Richter, A. R., Abreu, C. M. W. S., Feitosa, J. P. A., Paula, H. C. B., Goycoolea, F. M., & de Paula, R. C. M. (2016). Chitosan/Sterculia striata polysaccharides nanocomplex as a potential chloroquine drug release device. International Journal of Biological Macromolecules, 88, 244–253. https://doi.org/10.1016/j.ijbiomac.2016.03.070

Mahoney, E., Maddocks, K., Flynn, J., Jones, J., Cole, S. L., Zhang, X., Byrd, J. C., & Johnson, A. J. (2013). Identification of endoplasmic reticulum stress-inducing agents by antagonizing autophagy: A new potential strategy for identification of anti-cancer therapeutics in B-cell malignancies. Leukemia and Lymphoma, 54(12), 2685–2692. https://doi.org/10.3109/10428194.2013.781168

Mashal, M., Attia, N., Martínez-Navarrete, G., Soto-Sánchez, C., Fernández, E., Grijalvo, S., Eritja, R., Puras, G., & Pedraz, J. L. (2019). Gene delivery to the rat retina by non-viral vectors based on chloroquine-containing cationic niosomes. Journal of Controlled Release, 304, 181–190. https://doi.org/10.1016/j.jconrel.2019.05.010

Medhi, H., Maity, S., Suthram, N., Chalapareddy, S. K., Bhattacharyya, M. K., & Paik, P. (2018). Hollow mesoporous polymer capsules with Dihydroartemisinin and Chloroquine diphosphate for knocking down Plasmodium falciparum infection. Biomedical Physics and Engineering Express, 4(3). https://doi.org/10.1088/2057-1976/aaaddb

Medina-Kauwe, L. K., Xie, J., & Hamm-Alvarez S. Intracellular trafficking of nonviral vectors. Gene Therapy. 2005;12:1734–51

Min, S. H., Kim, D. M., Kim, M. N., Ge, J., Lee, D. C., Park, I. Y., Park, K. C., Hwang, J. S., Cho, C. W., & Yeom, Y. Il. (2010). Gene delivery using a derivative of the protein transduction domain peptide, K-Antp. Biomaterials, 31(7), 1858–1864. https://doi.org/10.1016/j.biomaterials.2009.11.019

Mishra, R., Kohli, S., Malhotra, N., Bandyopadhyay, P., Mehta, M., Munshi, M., Adiga, V., Kamal Ahuja, V., Shandil, R. K., Rajmani, R. S., Sai, A., Seshasayee, N., & Singh, A. (2019). Targeting redox heterogeneity to counteract drug tolerance in replicating Mycobacterium tuberculosis. In Sci. Transl. Med (Vol. 11). http://stm.sciencemag.org/

Moles, E., Urbán, P., Jiménez-Díaz, M. B., Viera-Morilla, S., Angulo-Barturen, I., Busquets, M. A., & Fernàndez-Busquets, X. (2015). Immunoliposome-mediated drug delivery to Plasmodium -infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy. Journal of Controlled Release, 210, 217–229. https://doi.org/10.1016/j.jconrel.2015.05.284

Movellan, J., Urbán, P., Moles, E., de la Fuente, J. M., Sierra, T., Serrano, J. L., & Fernàndez-Busquets, X. (2014). Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs. Biomaterials, 35(27), 7940–7950. https://doi.org/10.1016/j.biomaterials.2014.05.061

Muga, J. O., Gathirwa, J. W., Tukulula, M., & Jura, W. G. Z. O. (2018). In vitro evaluation of chloroquine-loaded and heparin surface-functionalized solid lipid nanoparticles. Malaria Journal, 17(1). https://doi.org/10.1186/s12936-018-2302-9

Navarro, M., Castro, W., Higuera-Padilla, A. R., Sierraalta, A., Abad, M. J., Taylor, P., & Sánchez-Delgado, R. A. (2011). Synthesis, characterization and biological activity of trans-platinum(II) complexes with chloroquine. Journal of Inorganic Biochemistry, 105(12), 1684–1691. https://doi.org/10.1016/j.jinorgbio.2011.09.024

Oluwatosin Kudirat, S., Tawakalitu, A., Saka, A. A., Kamaldeen, A. O., Mercy, B. T., & Oladejo, J. (2019). Entrapped chemically synthesized gold nanoparticles combined with polyethylene glycol and chloroquine diphosphate as an improved antimalarial drug. Nanomed. J, 6(2), 85–96. https://doi.org/10.22038/nmj.2019.06.0002

Paniri, A., Hosseini, M. M., Rasoulinejad, A., & Akhavan-Niaki, H. (2020). Molecular effects and retinopathy induced by hydroxychloroquine during SARS-CoV-2 therapy: Role of CYP450 isoforms and epigenetic modulations. European Journal of Pharmacology, 886, 173454. https://doi.org/10.1016/j.ejphar.2020.173454

Qiu, L., Yao, M., Gao, M., & Zhao, Q. (2012). Doxorubicin and chloroquine coencapsulated liposomes: Preparation and improved cytotoxicity on human breast cancer cells. Journal of Liposome Research, 22(3), 245–253. https://doi.org/10.3109/08982104.2012.684150

Rajendran, V., Pachauri, M., & Ghosh, P. C. (2017). Combinatorial Effects of Monensin in Liposome Formulations with Antimalarial Drugs Against Blood Stages of Plasmodium falciparum in Culture and P. berghei Infection. Current Drug Therapy, 13(1), 74–82. https://doi.org/10.2174/1574885512666171006162538

Roma-Rodrigues, C., Rivas-García, L., Baptista, P. V., & Fernandes, A. R. (2020). Gene therapy in cancer treatment: Why go nano? Pharmaceutics, 12(3), 233. https://doi.org/10.3390/pharmaceutics12030233

Salakhieva, D., Shevchenko, V., Németh, C., Gyarmati, B., Szilágyi, A., & Abdullin, T. (2017). Structure–biocompatibility and transfection activity relationships of cationic polyaspartamides with (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups. International Journal of Pharmaceutics, 517(1–2), 234–246. https://doi.org/10.1016/j.ijpharm.2016.12.007

Schiroli, D., Gómara, M. J., Maurizi, E., Atkinson, S. D., Mairs, L., Christie, K. A., Cobice, D. F., McCrudden, C. M., Nesbit, M. A., Haro, I., & Moore, T. (2019). Effective In Vivo Topical Delivery of siRNA and Gene Silencing in Intact Corneal Epithelium Using a Modified Cell-Penetrating Peptide. Molecular Therapy - Nucleic Acids, 17, 891–906. https://doi.org/10.1016/j.omtn.2019.07.017

Self, W. H., Semler, M. W., Leither, L. M., Casey, J. D., Angus, D. C., Brower, R. G., Chang, S. Y., Collins, S. P., Eppensteiner, J. C., Filbin, M. R., Files, D. C., Gibbs, K. W., Ginde, A. A., Gong, M. N., Harrell, F. E., Hayden, D. L., Hough, C. L., Johnson, N. J., Khan, A., … Brown, S. M. (2020). Effect of Hydroxychloroquine on Clinical Status at 14 Days in Hospitalized Patients With COVID-19. JAMA, 324(21), 2165–2176. https://doi.org/10.1001/jama.2020.22240

Serafin, M. B., Bottega, A., Foletto, V. S., da Rosa, T. F., Hörner, A., & Hörner, R. (2020). Drug repositioning is an alternative for the treatment of coronavirus COVID-19. International Journal of Antimicrobial Agents, 55(6), 105969. https://doi.org/10.1016/j.ijantimicag.2020.105969

Shafi, H., Reddy, D. V. S., Khan, T., Ranjan, R., Srivastava, A., Vaishya, S., Sharma, T., Siddiqui, M. I., Habib, S., & Misra, A. (2017). Dehydroascorbate-derivatized chitosan particles for targeting antimalarial agents to infected erythrocytes. International Journal of Pharmaceutics, 524(1–2), 205–214. https://doi.org/10.1016/j.ijpharm.2017.03.088

Shao, M., Zhu, W., Lv, X., Yang, Q., Liu, X., Xie, Y., Tang, P., & Sun, L. (2018). Encapsulation of chloroquine and doxorubicin by MPEG-PLA to enhance anticancer effects by lysosomes inhibition in ovarian cancer. International Journal of Nanomedicine, 13, 8231–8245. https://doi.org/10.2147/IJN.S174300

Shi, C., Zhang, Z., Shi, J., Wang, F., & Luan, Y. (2015). Co-delivery of docetaxel and chloroquine via PEO-PPO-PCL/TPGS micelles for overcoming multidrug resistance. International Journal of Pharmaceutics, 495(2), 932–939. https://doi.org/10.1016/j.ijpharm.2015.10.009

Singh, A. K., Singh, A., Shaikh, A., Singh, R., & Misra, A. (2020). Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(3), 241–246. https://doi.org/10.1016/j.dsx.2020.03.011

Stagni, V., Kaminari, A., Sideratou, Z., Sakellis, E., Vlahopoulos, S. A., & Tsiourvas, D. (2020). Targeting breast cancer stem-like cells using chloroquine encapsulated by a triphenylphosphonium-functionalized hyperbranched polymer. International Journal of Pharmaceutics, 585. https://doi.org/10.1016/j.ijpharm.2020.119465

Sun, J. H., Ye, C., Bai, E. H., Zhang, L. L., Huo, S. J., Yu, H. H., Xiang, S. Y., & Yu, S. Q. (2019). Co-delivery nanoparticles of doxorubicin and chloroquine for improving the anti-cancer effect in vitro. Nanotechnology, 30(8). https://doi.org/10.1088/1361-6528/aaf51b

Sun, R., Shen, S., Zhang, Y. J., Xu, C. F., Cao, Z. T., Wen, L. P., & Wang, J. (2016). Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials, 103, 44–55. https://doi.org/10.1016/j.biomaterials.2016.06.038

Tang, S., Huang, Z., Zhang, H., Wang, Y., Hu, Q., & Jiang, H. (2014). Design and formulation of trimethylated chitosan-graft-poly(ε- caprolactone) nanoparticles used for gene delivery. Carbohydrate Polymers, 101(1), 104–112. https://doi.org/10.1016/j.carbpol.2013.09.053

Thibault, M., Lavertu, M., Astolfi, M., & Buschmann, M. D. (2016). Structure Dependence of Lysosomal Transit of Chitosan-Based Polyplexes for Gene Delivery. Molecular Biotechnology, 58(10), 648–656. https://doi.org/10.1007/s12033-016-9964-8

Thomas, S., Sharma, N., Golden, E. B., Cho, H., Agarwal, P., Gaffney, K. J., Petasis, N. A., Chen, T. C., Hofman, F. M., Louie, S. G., & Schönthal, A. H. (2012). Preferential killing of triple-negative breast cancer cells in vitro and in vivo when pharmacological aggravators of endoplasmic reticulum stress are combined with autophagy inhibitors. Cancer Letters, 325(1), 63–71. https://doi.org/10.1016/j.canlet.2012.05.030

Tripathi, P. K., Upadhyay, S., Singh, M., Raghavendhar, S., Bhardwaj, M., Sharma, P., & Patel, A. K. (2020). Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2. International Journal of Biological Macromolecules, 164, 2622–2631. https://doi.org/10.1016/j.ijbiomac.2020.08.166

Tripathy, S., Chattopadhyay, S., Dash, S. K., Ray Chowdhuri, A., Das, S., Sahu, S. K., Majumdar, S., & Roy, S. (2015). Chitosan conjugated chloroquine: Proficient to protect the induction of liver apoptosis during malaria. International Journal of Biological Macromolecules, 74, 585–600. https://doi.org/10.1016/j.ijbiomac.2014.12.016

Tripathy, S., Das, S., Chakraborty, S. P., Sahu, S. K., Pramanik, P., & Roy, S. (2012). Synthesis, characterization of chitosan-tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite: A dose and duration dependent approach. International Journal of Pharmaceutics, 434(1–2), 292–305. https://doi.org/10.1016/j.ijpharm.2012.05.064

Tripathy, S., Das, S., Dash, S. K., Mahapatra, S. K., Chattopadhyay, S., Majumdar, S., & Roy, S. (2014). A prospective strategy to restore the tissue damage in malaria infection: Approach with chitosan-trypolyphosphate conjugated nanochloroquine in Swiss mice. European Journal of Pharmacology, 737, 11–21. https://doi.org/10.1016/j.ejphar.2014.04.030

Urbán, P., Estelrich, J., Cortés, A., & Fernàndez-Busquets, X. (2011). A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro. Journal of Controlled Release, 151(2), 202–211. https://doi.org/10.1016/j.jconrel.2011.01.001

Urbán, P., Valle-Delgado, J. J., Mauro, N., Marques, J., Manfredi, A., Rottmann, M., Ranucci, E., Ferruti, P., & Fernàndez-Busquets, X. (2014). Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium. Journal of Controlled Release, 177(1), 84–95. https://doi.org/10.1016/j.jconrel.2013.12.032

Usman, M., & Akhyar Farrukh, M. (2018). Formulation of polymeric iron nano-chloroquine phosphate anti-malarial drug via polyol method. Materials Today: Proceedings, 5(7), 15595–15602. https://doi.org/10.1016/j.matpr.2018.04.168

Valdés-Abadía, B., Morán-Zendejas, R., Rangel-Flores, J. M., & Rodríguez-Menchaca, A. A. (2019). Chloroquine inhibits tumor-related Kv10.1 channel and decreases migration of MDA-MB-231 breast cancer cells in vitro. European Journal of Pharmacology, 855(February), 262–266. https://doi.org/10.1016/j.ejphar.2019.05.017

Vazquez-Martin, A., López-Bonetc, E., Cufí, S., Oliveras-Ferraros, C., Del Barco, S., Martin-Castillo, B., & Menendez, J. A. (2011). Repositioning chloroquine and metformin to eliminate cancer stem cell traits in pre-malignant lesions. Drug Resistance Updates, 14(4–5), 212–223. https://doi.org/10.1016/j.drup.2011.04.003

Wang, Q. Q., & Xu, R. (2015). DenguePredict: An Integrated Drug Repositioning Approach towards Drug Discovery for Dengue. AMIA ... Annual Symposium Proceedings. AMIA Symposium, 2015, 1279–1288.

Wang, Y., Zhou, Z., Chen, W., Qin, M., Zhang, Z., Gong, T., & Sun, X. (2018). Potentiating bacterial cancer therapy using hydroxychloroquine liposomes. Journal of Controlled Release, 280(April), 39–50. https://doi.org/10.1016/j.jconrel.2018.04.046

Xie, F., Zhang, S., Liu, J., Gong, Z., Yang, K., Zhang, H., Lu, Y., Zou, H., Yu, Y., Chen, Y., Sun, Z., Wang, X., Zhang, H., Zhang, G., Li, W., Li, B., Gao, J., & Zhong, Y. (2016). Codelivery of salinomycin and chloroquine by liposomes enables synergistic antitumor activity in vitro. Nanomedicine, 11(14), 1831–1846. https://doi.org/10.2217/nnm-2016-0125

Xu, J., Zhu, X., & Qiu, L. (2016). Polyphosphazene vesicles for co-delivery of doxorubicin and chloroquine with enhanced anticancer efficacy by drug resistance reversal. International Journal of Pharmaceutics, 498(1–2), 70–81. https://doi.org/10.1016/j.ijpharm.2015.12.003

Yamano, S., Dai, J., Yuvienco, C., Khapli, S., Moursi, A. M., & Montclare, J. K. (2011). Modified Tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis. Journal of Controlled Release, 152(2), 278–285. https://doi.org/10.1016/j.jconrel.2011.02.004

Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., Liu, X., Zhao, L., Dong, E., Song, C., Zhan, S., Lu, R., Li, H., Tan, W., & Liu, D. (2020). In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases, 71(15), 732–739. https://doi.org/10.1093/cid/ciaa237

Yoo, H., & Mok, H. (2015). Evaluation of multimeric siRNA conjugates for efficient protamine-based delivery into breast cancer cells. Archives of Pharmacal Research, 38(1), 129–136. https://doi.org/10.1007/s12272-014-0359-8

Zhang, L., Liu, S., Liu, H., Yang, C., Jiang, A., Wei, H., Sun, D., Cai, Z., & Zheng, Y. (2020). Versatile cationic liposomes for RIP3 overexpression in colon cancer therapy and RIP3 downregulation in acute pancreatitis therapy. Journal of Drug Targeting, 28(6), 627–642. https://doi.org/10.1080/1061186X.2019.1708370

Zhang, X., Dong, Y., Zeng, X., Liang, X., Li, X., Tao, W., Chen, H., Jiang, Y., Mei, L., & Feng, S. S. (2014a). The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials, 35(6), 1932–1943. https://doi.org/10.1016/j.biomaterials.2013.10.034

Zhang, X., Dong, Y., Zeng, X., Liang, X., Li, X., Tao, W., Chen, H., Jiang, Y., Mei, L., & Feng, S. S. (2014b). The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials, 35(6), 1932–1943. https://doi.org/10.1016/j.biomaterials.2013.10.034

Zhang, X., Zeng, X., Liang, X., Yang, Y., Li, X., Chen, H., Huang, L., Mei, L., & Feng, S. S. (2014). The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials, 35(33), 9144–9154. https://doi.org/10.1016/j.biomaterials.2014.07.028

Zhang, Y., Cao, Y., Sun, X., Feng, Y., Du, Y., Liu, F., Yu, C., & Jin, F. (2017). Chloroquine (CQ) exerts anti-breast cancer through modulating microenvironment and inducing apoptosis. International Immunopharmacology, 42, 100–107. https://doi.org/10.1016/j.intimp.2016.11.027

Zheng, Y., Su, C., Zhao, L., & Shi, Y. (2017). mAb MDR1-modified chitosan nanoparticles overcome acquired EGFR-TKI resistance through two potential therapeutic targets modulation of MDR1 and autophagy. Journal of Nanobiotechnology, 15(1). https://doi.org/10.1186/s12951-017-0302-5

Zhou, Z., Yan, Y., Hu, K., Zou, Y., Li, Y., Ma, R., Zhang, Q., & Cheng, Y. (2017). Autophagy inhibition enabled efficient photothermal therapy at a mild temperature. Biomaterials, 141, 116–124. https://doi.org/10.1016/j.biomaterials.2017.06.030

Published

22/06/2021

How to Cite

OLIVEIRA, C. dos R.; PEREIRA, J. C.; OLIVEIRA, L. V. de C. .; CARVALHO, A. L. M. . New drug delivery systems, technological use and repositioning of chloroquine and hydroxychloroquine: An integrative review. Research, Society and Development, [S. l.], v. 10, n. 7, p. e29910716589, 2021. DOI: 10.33448/rsd-v10i7.16589. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16589. Acesso em: 2 jan. 2025.

Issue

Section

Review Article