Nuevos sistemas de liberación de medicamentos uso tecnológico y reposicionamiento de cloroquina e hidroxicloroquina: Una revisión integradora
DOI:
https://doi.org/10.33448/rsd-v10i7.16589Palabras clave:
Sistemas de liberación de fármacos; Cloroquina; Hidroxicloroquina; Malaria; Terapia génica; Terapia contra el cáncer.Resumen
La cloroquina (CQ) y la hidroxicloroquina (HCQ) se han utilizado históricamente para tratar diversas afecciones que difieren de su indicación médica original. Además de su uso como antipalúdicos, estos medicamentos se utilizan para tratar trastornos autoinmunes y recientemente han llamado la atención debido a la evidencia in silico e in vitro de su actividad contra el SARS-CoV-2, hecho que ha impulsado su uso de forma apresurada en el tratamiento de COVID-19. El presente estudio tuvo como objetivo destacar los avances en la investigación relacionados con el reposicionamiento de CQ y HCQ, su uso como terapia adyuvante para el tratamiento de otras patologías y el desarrollo de nuevos sistemas de administración de fármacos. Se realizó una búsqueda en PubMed, Science Direct y Web of Science utilizando las palabras clave chloroquine, hydroxychloroquine, formulation y repositioning. Se incluyeron en la revisión artículos publicados en inglés de 2010 a 2020 que presentaban CQ o HCQ en el tratamiento de enfermedades o como componentes de formulaciones y sistemas de distribución. Se han obtenido 788 artículos, de los cuales 69 se incluyeron en el estudio después del refinamiento de la búsqueda y clasificación. Según el uso tecnológico o clínico de CQ y HCQ, estos artículos se categorizaron en cuatro grupos temáticos: malaria, terapia génica, terapia contra el cáncer y enfermedades de base inmunitaria. Además de los estudios sobre reposicionamiento de fármacos, podemos destacar los artículos con propuestas de nuevas formulaciones y sistemas de liberación de fármacos para patologías ya tratadas con este tipo de moléculas, con especial énfasis en la superación de los mecanismos de resistencia terapéutica.
Citas
Alfrd Mavondo, G. A., & Tagumirwa, M. C. (2016). Asiatic acid-pectin hydrogel matrix patch transdermal delivery system influences parasitaemia suppression and inflammation reduction in P. berghei murine malaria infected Sprague–Dawley rats. Asian Pacific Journal of Tropical Medicine, 9(12), 1172–1180. https://doi.org/10.1016/j.apjtm.2016.10.008
Alshehri, A., Grabowska, A., & Stolnik, S. (2018). Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-22166-3
Baruah, U. K., Gowthamarajan, K., Ravisankar, V., Karri, V. V. S. R., Simhadri, P. K., & Singh, V. (2018). Optimisation of chloroquine phosphate loaded nanostructured lipid carriers using Box–Behnken design and its antimalarial efficacy. Journal of Drug Targeting, 26(7), 576–591. https://doi.org/10.1080/1061186X.2017.1390671
Bendas, E. R., Abdullah, H., El-Komy, M. H. M., & Kassem, M. A. A. (2013). Hydroxychloroquine niosomes: A new trend in topical management of oral lichen planus. International Journal of Pharmaceutics, 458(2), 287–295. https://doi.org/10.1016/j.ijpharm.2013.10.042
Bhalekar, M. R., Upadhaya, P. G., & Madgulkar, A. R. (2016). Fabrication and efficacy evaluation of chloroquine nanoparticles in CFA-induced arthritic rats using TNF-α ELISA. European Journal of Pharmaceutical Sciences, 84, 1–8. https://doi.org/10.1016/j.ejps.2016.01.009
Bibi, N., Gul, S., Ali, J., & Kamal, M. A. (2020). Viroinformatics approach to explore the inhibitory mechanism of existing drugs repurposed to fight against COVID-19. European Journal of Pharmacology, 173496. https://doi.org/10.1016/j.ejphar.2020.173496
Boyle, W. S., Twaroski, K., Woska, E. C., Tolar, J., & Reineke, T. M. (2019). Molecular Additives Significantly Enhance Glycopolymer-Mediated Transfection of Large Plasmids and Functional CRISPR-Cas9 Transcription Activation Ex Vivo in Primary Human Fibroblasts and Induced Pluripotent Stem Cells. Bioconjugate Chemistry, 30(2), 418–431. https://doi.org/10.1021/acs.bioconjchem.8b00760
Capel, R. A., Herring, N., Kalla, M., Yavari, A., Mirams, G. R., Douglas, G., Bub, G., Channon, K., Paterson, D. J., Terrar, D. A., & Burton, R. A. B. (2015). Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current If: Novel electrophysiological insights and therapeutic potential. Heart Rhythm, 12(10), 2186–2194. https://doi.org/10.1016/j.hrthm.2015.05.027
Cassidy, C., Dever, D., Stanbery, L., Edelman, G., Dworkin, L., & Nemunaitis, J. (2020). FDA efficiency for approval process of COVID-19 therapeutics. Infectious Agents and Cancer, 15(1), 73. https://doi.org/10.1186/s13027-020-00338-z
Catalano, R., Rocca, R., Juli, G., Costa, G., Maruca, A., Artese, A., Caracciolo, D., Tagliaferri, P., Alcaro, S., Tassone, P., & Amodio, N. (2019). A drug repurposing screening reveals a novel epigenetic activity of hydroxychloroquine. European Journal of Medicinal Chemistry, 183. https://doi.org/10.1016/j.ejmech.2019.111715
Cavalcanti, A. B., Zampieri, F. G., Rosa, R. G., Azevedo, L. C. P., Veiga, V. C., Avezum, A., Damiani, L. P., Marcadenti, A., Kawano-Dourado, L., Lisboa, T., Junqueira, D. L. M., de Barros e Silva, P. G. M., Tramujas, L., Abreu-Silva, E. O., Laranjeira, L. N., Soares, A. T., Echenique, L. S., Pereira, A. J., Freitas, F. G. R., … Berwanger, O. (2020). Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. New England Journal of Medicine, 383(21), 2041–2052. https://doi.org/10.1056/NEJMoa2019014
Chang, C. T., Korivi, M., Huang, H. C., Thiyagarajan, V., Lin, K. Y., Huang, P. J., Liu, J. Y., Hseu, Y. C., & Yang, H. L. (2017). Inhibition of ROS production, autophagy or apoptosis signaling reversed the anticancer properties of Antrodia salmonea in triple-negative breast cancer (MDA-MB-231) cells. Food and Chemical Toxicology, 103, 1–17. https://doi.org/10.1016/j.fct.2017.02.019
Chatre, C., Roubille, F., Vernhet, H., Jorgensen, C., & Pers, Y.-M. (2018). Cardiac Complications Attributed to Chloroquine and Hydroxychloroquine: A Systematic Review of the Literature. Drug Safety, 41(10), 919–931. https://doi.org/10.1007/s40264-018-0689-4
Chen, Y., Traore, Y. L., Li, A., Fowke, K. R., & Ho, E. A. (2014). Development of polyether urethane intravaginal rings for the sustained delivery of hydroxychloroquine. Drug Design, Development and Therapy, 8, 1801–1815. https://doi.org/10.2147/DDDT.S71352
Chen, Y., Traore, Y. L., Yang, S., Lajoie, J., Fowke, K. R., Rickey, D. W., & Ho, E. A. (2018). Implant delivering hydroxychloroquine attenuates vaginal T lymphocyte activation and inflammation. Journal of Controlled Release, 277(March), 102–113. https://doi.org/10.1016/j.jconrel.2018.03.010
Choi, E., Lim, D. K., & Kim, S. (2020). Calcium-doped mesoporous silica nanoparticles as a lysosomolytic nanocarrier for amine-free loading and cytosolic delivery of siRNA. Journal of Industrial and Engineering Chemistry, 81, 71–80. https://doi.org/10.1016/j.jiec.2019.08.054
Coma-Cros, E. M., Biosca, A., Marques, J., Carol, L., Urbán, P., Berenguer, D., Riera, M. C., Delves, M., Sinden, R. E., Valle-Delgado, J. J., Spanos, L., Siden-Kiamos, I., Pérez, P., Paaijmans, K., Rottmann, M., Manfredi, A., Ferruti, P., Ranucci, E., & Fernàndez-Busquets, X. (2018). Polyamidoamine nanoparticles for the oral administration of antimalarial drugs. Pharmaceutics, 10(4), 1–20. https://doi.org/10.3390/pharmaceutics10040225
Deng, J., Wen, Y., Wang, C., Pan, S., Gu, H., Zeng, X., Han, L., Zhao, Y., Feng, M., & Wu, C. (2011). Efficient intracellular gene delivery using the formulation composed of poly (L-glutamic acid) grafted polyethylenimine and histone. Pharmaceutical Research, 28(4), 812–826. https://doi.org/10.1007/s11095-010-0335-z
dos Reis Neto, E. T., Kakehasi, A. M., de Medeiros Pinheiro, M., Ferreira, G. A., Marques, C. D. L., da Mota, L. M. H., dos Santos Paiva, E., Pileggi, G. C. S., Sato, E. I., Reis, A. P. M. G., Xavier, R. M., & Provenza, J. R. (2020). Revisiting hydroxychloroquine and chloroquine for patients with chronic immunity-mediated inflammatory rheumatic diseases. Advances in Rheumatology, 60(1), 32. https://doi.org/10.1186/s42358-020-00134-8
Elshazly, E. H., Zhang, S., Yu, L., Zhang, Y., Ke, L., & Gong, R. (2020). Hydroxychloroquine enhances anticancer effect of DOX/folate-phytosterol-carboxymethyl cellulose nanoparticles in A549 lung cancer cells. Tropical Journal of Pharmaceutical Research, 19(2), 219–225. https://doi.org/10.4314/tjpr.v19i2.1
Fotoran, W. L., Müntefering, T., Kleiber, N., Miranda, B. N. M., Liebau, E., Irvine, D. J., & Wunderlich, G. (2019). A multilamellar nanoliposome stabilized by interlayer hydrogen bonds increases antimalarial drug efficacy. Nanomedicine: Nanotechnology, Biology, and Medicine, 22. https://doi.org/10.1016/j.nano.2019.102099
Garuzi, M., Achitti, M. C. D. O., Sato, C. A., Rocha, S. A., & Spagnuolo, R. S. (2014). Acolhimento na Estratégia Saúde da Família: revisão integrativa. Revista Panamericana de Salud Publica, 35, 144-149.
Gautret, P., Lagier, J. C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V. E., Tissot Dupont, H., Honoré, S., Colson, P., Chabrière, E., La Scola, B., Rolain, J. M., Brouqui, P., & Raoult, D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 56(1). https://doi.org/10.1016/j.ijantimicag.2020.105949
Gonçalves, G. A. R., & Paiva, R. de M. A. (2017). Gene therapy: Advances, challenges and perspectives. Einstein (São Paulo), 15(3), 369–375. https://doi.org/10.1590/s1679-45082017rb4024
Horby, P., Mafham, M., Linsell, L., Phil, D., Bell, J. L., Staplin, N., Emberson, J.-T. R., Wiselka, M., Ustianowski, A., Elmahi, E., Phil, M., Prudon, B., Whitehouse, T., Fel-Ton, T., Williams, J., Faccenda, J., Underwood, J., Kenneth Baillie, J., Chappell, L. C., … Landray, M. J. (2020). Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. New England Journal of Medicine, 383(21), 2030–2040. https://doi.org/10.1056/NEJMoa2022926
Hou, X., Yang, C., Zhang, L., Hu, T., Sun, D., Cao, H., Yang, F., Guo, G., Gong, C., Zhang, X., Tong, A., Li, R., & Zheng, Y. (2017). Killing colon cancer cells through PCD pathways by a novel hyaluronic acid-modified shell-core nanoparticle loaded with RIP3 in combination with chloroquine. Biomaterials, 124, 195–210. https://doi.org/10.1016/j.biomaterials.2016.12.032
Hu, T., Li, P., Luo, Z., Chen, X., Zhang, J., Wang, C., Chen, P., & Dong, Z. (2016). Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo. Oncology Reports, 35(1), 43–49. https://doi.org/10.3892/or.2015.4380
Joshi, P., Chakraborti, S., Ramirez-Vick, J. E., Ansari, Z. A., Shanker, V., Chakrabarti, P., & Singh, S. P. (2012). The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids and Surfaces B: Biointerfaces, 95, 195–200. https://doi.org/10.1016/j.colsurfb.2012.02.039
Joshi, P., Chakraborty, S., Dey, S., Shanker, V., Ansari, Z. A., Singh, S. P., & Chakrabarti, P. (2011). Binding of chloroquine-conjugated gold nanoparticles with bovine serum albumin. Journal of Colloid and Interface Science, 355(2), 402–409. https://doi.org/10.1016/j.jcis.2010.12.032
Juang, V., Lee, H. P., Lin, A. M. Y., & Lo, Y. L. (2016). Cationic PEGylated liposomes incorporating an antimicrobial peptide tilapia hepcidin 2–3: An adjuvant of epirubicin to overcome multidrug resistance in cervical cancer cells. International Journal of Nanomedicine, 11, 6047–6064. https://doi.org/10.2147/IJN.S117618
Kanvinde, S., Chhonker, Y. S., Ahmad, R., Yu, F., Sleightholm, R., Tang, W., Jaramillo, L., Chen, Y., Sheinin, Y., Li, J., Murry, D. J., Singh, A. B., & Oupický, D. (2018). Pharmacokinetics and efficacy of orally administered polymeric chloroquine as macromolecular drug in the treatment of inflammatory bowel disease. Acta Biomaterialia, 82, 158–170. https://doi.org/10.1016/j.actbio.2018.10.027
Kashyap, A., Kaur, R., Baldi, A., Jain, U. K., Chandra, R., & Madan, J. (2018). Chloroquine diphosphate bearing dextran nanoparticles augmented drug delivery and overwhelmed drug resistance in Plasmodium falciparum parasites. International Journal of Biological Macromolecules, 114, 161–168. https://doi.org/10.1016/j.ijbiomac.2018.03.102
Kay, M. A., Glorioso, J. C., & Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature Medicine. 2001;7:33–40
Kivrak, A., Ulaş, B., & Kivrak, H. (2021). A comparative analysis for anti-viral drugs: Their efficiency against SARS-CoV-2. International Immunopharmacology, 90, 107232. https://doi.org/10.1016/j.intimp.2020.107232
Kumar, R., Sharma, A., Srivastava, J. K., Siddiqui, M. H., Uddin, M. S., & Aleya, L. (2021). Hydroxychloroquine in COVID-19: therapeutic promises, current status, and environmental implications. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-12200-1
Liu, J., Liu, X., Han, Y., Zhang, J., Liu, D., Ma, G., Li, C., Liu, L., & Kong, D. (2018). Nanovaccine Incorporated with Hydroxychloroquine Enhances Antigen Cross-Presentation and Promotes Antitumor Immune Responses. ACS Applied Materials & Interfaces, 10(37), 30983–30993. https://doi.org/10.1021/acsami.8b09348
Lv, T., Li, Z., Xu, L., Zhang, Y., Chen, H., & Gao, Y. (2018). Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer. Acta Biomaterialia, 76, 257–274. https://doi.org/10.1016/j.actbio.2018.06.034
Magalhães, G. A., Moura Neto, E., Sombra, V. G., Richter, A. R., Abreu, C. M. W. S., Feitosa, J. P. A., Paula, H. C. B., Goycoolea, F. M., & de Paula, R. C. M. (2016). Chitosan/Sterculia striata polysaccharides nanocomplex as a potential chloroquine drug release device. International Journal of Biological Macromolecules, 88, 244–253. https://doi.org/10.1016/j.ijbiomac.2016.03.070
Mahoney, E., Maddocks, K., Flynn, J., Jones, J., Cole, S. L., Zhang, X., Byrd, J. C., & Johnson, A. J. (2013). Identification of endoplasmic reticulum stress-inducing agents by antagonizing autophagy: A new potential strategy for identification of anti-cancer therapeutics in B-cell malignancies. Leukemia and Lymphoma, 54(12), 2685–2692. https://doi.org/10.3109/10428194.2013.781168
Mashal, M., Attia, N., Martínez-Navarrete, G., Soto-Sánchez, C., Fernández, E., Grijalvo, S., Eritja, R., Puras, G., & Pedraz, J. L. (2019). Gene delivery to the rat retina by non-viral vectors based on chloroquine-containing cationic niosomes. Journal of Controlled Release, 304, 181–190. https://doi.org/10.1016/j.jconrel.2019.05.010
Medhi, H., Maity, S., Suthram, N., Chalapareddy, S. K., Bhattacharyya, M. K., & Paik, P. (2018). Hollow mesoporous polymer capsules with Dihydroartemisinin and Chloroquine diphosphate for knocking down Plasmodium falciparum infection. Biomedical Physics and Engineering Express, 4(3). https://doi.org/10.1088/2057-1976/aaaddb
Medina-Kauwe, L. K., Xie, J., & Hamm-Alvarez S. Intracellular trafficking of nonviral vectors. Gene Therapy. 2005;12:1734–51
Min, S. H., Kim, D. M., Kim, M. N., Ge, J., Lee, D. C., Park, I. Y., Park, K. C., Hwang, J. S., Cho, C. W., & Yeom, Y. Il. (2010). Gene delivery using a derivative of the protein transduction domain peptide, K-Antp. Biomaterials, 31(7), 1858–1864. https://doi.org/10.1016/j.biomaterials.2009.11.019
Mishra, R., Kohli, S., Malhotra, N., Bandyopadhyay, P., Mehta, M., Munshi, M., Adiga, V., Kamal Ahuja, V., Shandil, R. K., Rajmani, R. S., Sai, A., Seshasayee, N., & Singh, A. (2019). Targeting redox heterogeneity to counteract drug tolerance in replicating Mycobacterium tuberculosis. In Sci. Transl. Med (Vol. 11). http://stm.sciencemag.org/
Moles, E., Urbán, P., Jiménez-Díaz, M. B., Viera-Morilla, S., Angulo-Barturen, I., Busquets, M. A., & Fernàndez-Busquets, X. (2015). Immunoliposome-mediated drug delivery to Plasmodium -infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy. Journal of Controlled Release, 210, 217–229. https://doi.org/10.1016/j.jconrel.2015.05.284
Movellan, J., Urbán, P., Moles, E., de la Fuente, J. M., Sierra, T., Serrano, J. L., & Fernàndez-Busquets, X. (2014). Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs. Biomaterials, 35(27), 7940–7950. https://doi.org/10.1016/j.biomaterials.2014.05.061
Muga, J. O., Gathirwa, J. W., Tukulula, M., & Jura, W. G. Z. O. (2018). In vitro evaluation of chloroquine-loaded and heparin surface-functionalized solid lipid nanoparticles. Malaria Journal, 17(1). https://doi.org/10.1186/s12936-018-2302-9
Navarro, M., Castro, W., Higuera-Padilla, A. R., Sierraalta, A., Abad, M. J., Taylor, P., & Sánchez-Delgado, R. A. (2011). Synthesis, characterization and biological activity of trans-platinum(II) complexes with chloroquine. Journal of Inorganic Biochemistry, 105(12), 1684–1691. https://doi.org/10.1016/j.jinorgbio.2011.09.024
Oluwatosin Kudirat, S., Tawakalitu, A., Saka, A. A., Kamaldeen, A. O., Mercy, B. T., & Oladejo, J. (2019). Entrapped chemically synthesized gold nanoparticles combined with polyethylene glycol and chloroquine diphosphate as an improved antimalarial drug. Nanomed. J, 6(2), 85–96. https://doi.org/10.22038/nmj.2019.06.0002
Paniri, A., Hosseini, M. M., Rasoulinejad, A., & Akhavan-Niaki, H. (2020). Molecular effects and retinopathy induced by hydroxychloroquine during SARS-CoV-2 therapy: Role of CYP450 isoforms and epigenetic modulations. European Journal of Pharmacology, 886, 173454. https://doi.org/10.1016/j.ejphar.2020.173454
Qiu, L., Yao, M., Gao, M., & Zhao, Q. (2012). Doxorubicin and chloroquine coencapsulated liposomes: Preparation and improved cytotoxicity on human breast cancer cells. Journal of Liposome Research, 22(3), 245–253. https://doi.org/10.3109/08982104.2012.684150
Rajendran, V., Pachauri, M., & Ghosh, P. C. (2017). Combinatorial Effects of Monensin in Liposome Formulations with Antimalarial Drugs Against Blood Stages of Plasmodium falciparum in Culture and P. berghei Infection. Current Drug Therapy, 13(1), 74–82. https://doi.org/10.2174/1574885512666171006162538
Roma-Rodrigues, C., Rivas-García, L., Baptista, P. V., & Fernandes, A. R. (2020). Gene therapy in cancer treatment: Why go nano? Pharmaceutics, 12(3), 233. https://doi.org/10.3390/pharmaceutics12030233
Salakhieva, D., Shevchenko, V., Németh, C., Gyarmati, B., Szilágyi, A., & Abdullin, T. (2017). Structure–biocompatibility and transfection activity relationships of cationic polyaspartamides with (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups. International Journal of Pharmaceutics, 517(1–2), 234–246. https://doi.org/10.1016/j.ijpharm.2016.12.007
Schiroli, D., Gómara, M. J., Maurizi, E., Atkinson, S. D., Mairs, L., Christie, K. A., Cobice, D. F., McCrudden, C. M., Nesbit, M. A., Haro, I., & Moore, T. (2019). Effective In Vivo Topical Delivery of siRNA and Gene Silencing in Intact Corneal Epithelium Using a Modified Cell-Penetrating Peptide. Molecular Therapy - Nucleic Acids, 17, 891–906. https://doi.org/10.1016/j.omtn.2019.07.017
Self, W. H., Semler, M. W., Leither, L. M., Casey, J. D., Angus, D. C., Brower, R. G., Chang, S. Y., Collins, S. P., Eppensteiner, J. C., Filbin, M. R., Files, D. C., Gibbs, K. W., Ginde, A. A., Gong, M. N., Harrell, F. E., Hayden, D. L., Hough, C. L., Johnson, N. J., Khan, A., … Brown, S. M. (2020). Effect of Hydroxychloroquine on Clinical Status at 14 Days in Hospitalized Patients With COVID-19. JAMA, 324(21), 2165–2176. https://doi.org/10.1001/jama.2020.22240
Serafin, M. B., Bottega, A., Foletto, V. S., da Rosa, T. F., Hörner, A., & Hörner, R. (2020). Drug repositioning is an alternative for the treatment of coronavirus COVID-19. International Journal of Antimicrobial Agents, 55(6), 105969. https://doi.org/10.1016/j.ijantimicag.2020.105969
Shafi, H., Reddy, D. V. S., Khan, T., Ranjan, R., Srivastava, A., Vaishya, S., Sharma, T., Siddiqui, M. I., Habib, S., & Misra, A. (2017). Dehydroascorbate-derivatized chitosan particles for targeting antimalarial agents to infected erythrocytes. International Journal of Pharmaceutics, 524(1–2), 205–214. https://doi.org/10.1016/j.ijpharm.2017.03.088
Shao, M., Zhu, W., Lv, X., Yang, Q., Liu, X., Xie, Y., Tang, P., & Sun, L. (2018). Encapsulation of chloroquine and doxorubicin by MPEG-PLA to enhance anticancer effects by lysosomes inhibition in ovarian cancer. International Journal of Nanomedicine, 13, 8231–8245. https://doi.org/10.2147/IJN.S174300
Shi, C., Zhang, Z., Shi, J., Wang, F., & Luan, Y. (2015). Co-delivery of docetaxel and chloroquine via PEO-PPO-PCL/TPGS micelles for overcoming multidrug resistance. International Journal of Pharmaceutics, 495(2), 932–939. https://doi.org/10.1016/j.ijpharm.2015.10.009
Singh, A. K., Singh, A., Shaikh, A., Singh, R., & Misra, A. (2020). Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(3), 241–246. https://doi.org/10.1016/j.dsx.2020.03.011
Stagni, V., Kaminari, A., Sideratou, Z., Sakellis, E., Vlahopoulos, S. A., & Tsiourvas, D. (2020). Targeting breast cancer stem-like cells using chloroquine encapsulated by a triphenylphosphonium-functionalized hyperbranched polymer. International Journal of Pharmaceutics, 585. https://doi.org/10.1016/j.ijpharm.2020.119465
Sun, J. H., Ye, C., Bai, E. H., Zhang, L. L., Huo, S. J., Yu, H. H., Xiang, S. Y., & Yu, S. Q. (2019). Co-delivery nanoparticles of doxorubicin and chloroquine for improving the anti-cancer effect in vitro. Nanotechnology, 30(8). https://doi.org/10.1088/1361-6528/aaf51b
Sun, R., Shen, S., Zhang, Y. J., Xu, C. F., Cao, Z. T., Wen, L. P., & Wang, J. (2016). Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials, 103, 44–55. https://doi.org/10.1016/j.biomaterials.2016.06.038
Tang, S., Huang, Z., Zhang, H., Wang, Y., Hu, Q., & Jiang, H. (2014). Design and formulation of trimethylated chitosan-graft-poly(ε- caprolactone) nanoparticles used for gene delivery. Carbohydrate Polymers, 101(1), 104–112. https://doi.org/10.1016/j.carbpol.2013.09.053
Thibault, M., Lavertu, M., Astolfi, M., & Buschmann, M. D. (2016). Structure Dependence of Lysosomal Transit of Chitosan-Based Polyplexes for Gene Delivery. Molecular Biotechnology, 58(10), 648–656. https://doi.org/10.1007/s12033-016-9964-8
Thomas, S., Sharma, N., Golden, E. B., Cho, H., Agarwal, P., Gaffney, K. J., Petasis, N. A., Chen, T. C., Hofman, F. M., Louie, S. G., & Schönthal, A. H. (2012). Preferential killing of triple-negative breast cancer cells in vitro and in vivo when pharmacological aggravators of endoplasmic reticulum stress are combined with autophagy inhibitors. Cancer Letters, 325(1), 63–71. https://doi.org/10.1016/j.canlet.2012.05.030
Tripathi, P. K., Upadhyay, S., Singh, M., Raghavendhar, S., Bhardwaj, M., Sharma, P., & Patel, A. K. (2020). Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2. International Journal of Biological Macromolecules, 164, 2622–2631. https://doi.org/10.1016/j.ijbiomac.2020.08.166
Tripathy, S., Chattopadhyay, S., Dash, S. K., Ray Chowdhuri, A., Das, S., Sahu, S. K., Majumdar, S., & Roy, S. (2015). Chitosan conjugated chloroquine: Proficient to protect the induction of liver apoptosis during malaria. International Journal of Biological Macromolecules, 74, 585–600. https://doi.org/10.1016/j.ijbiomac.2014.12.016
Tripathy, S., Das, S., Chakraborty, S. P., Sahu, S. K., Pramanik, P., & Roy, S. (2012). Synthesis, characterization of chitosan-tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite: A dose and duration dependent approach. International Journal of Pharmaceutics, 434(1–2), 292–305. https://doi.org/10.1016/j.ijpharm.2012.05.064
Tripathy, S., Das, S., Dash, S. K., Mahapatra, S. K., Chattopadhyay, S., Majumdar, S., & Roy, S. (2014). A prospective strategy to restore the tissue damage in malaria infection: Approach with chitosan-trypolyphosphate conjugated nanochloroquine in Swiss mice. European Journal of Pharmacology, 737, 11–21. https://doi.org/10.1016/j.ejphar.2014.04.030
Urbán, P., Estelrich, J., Cortés, A., & Fernàndez-Busquets, X. (2011). A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro. Journal of Controlled Release, 151(2), 202–211. https://doi.org/10.1016/j.jconrel.2011.01.001
Urbán, P., Valle-Delgado, J. J., Mauro, N., Marques, J., Manfredi, A., Rottmann, M., Ranucci, E., Ferruti, P., & Fernàndez-Busquets, X. (2014). Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium. Journal of Controlled Release, 177(1), 84–95. https://doi.org/10.1016/j.jconrel.2013.12.032
Usman, M., & Akhyar Farrukh, M. (2018). Formulation of polymeric iron nano-chloroquine phosphate anti-malarial drug via polyol method. Materials Today: Proceedings, 5(7), 15595–15602. https://doi.org/10.1016/j.matpr.2018.04.168
Valdés-Abadía, B., Morán-Zendejas, R., Rangel-Flores, J. M., & Rodríguez-Menchaca, A. A. (2019). Chloroquine inhibits tumor-related Kv10.1 channel and decreases migration of MDA-MB-231 breast cancer cells in vitro. European Journal of Pharmacology, 855(February), 262–266. https://doi.org/10.1016/j.ejphar.2019.05.017
Vazquez-Martin, A., López-Bonetc, E., Cufí, S., Oliveras-Ferraros, C., Del Barco, S., Martin-Castillo, B., & Menendez, J. A. (2011). Repositioning chloroquine and metformin to eliminate cancer stem cell traits in pre-malignant lesions. Drug Resistance Updates, 14(4–5), 212–223. https://doi.org/10.1016/j.drup.2011.04.003
Wang, Q. Q., & Xu, R. (2015). DenguePredict: An Integrated Drug Repositioning Approach towards Drug Discovery for Dengue. AMIA ... Annual Symposium Proceedings. AMIA Symposium, 2015, 1279–1288.
Wang, Y., Zhou, Z., Chen, W., Qin, M., Zhang, Z., Gong, T., & Sun, X. (2018). Potentiating bacterial cancer therapy using hydroxychloroquine liposomes. Journal of Controlled Release, 280(April), 39–50. https://doi.org/10.1016/j.jconrel.2018.04.046
Xie, F., Zhang, S., Liu, J., Gong, Z., Yang, K., Zhang, H., Lu, Y., Zou, H., Yu, Y., Chen, Y., Sun, Z., Wang, X., Zhang, H., Zhang, G., Li, W., Li, B., Gao, J., & Zhong, Y. (2016). Codelivery of salinomycin and chloroquine by liposomes enables synergistic antitumor activity in vitro. Nanomedicine, 11(14), 1831–1846. https://doi.org/10.2217/nnm-2016-0125
Xu, J., Zhu, X., & Qiu, L. (2016). Polyphosphazene vesicles for co-delivery of doxorubicin and chloroquine with enhanced anticancer efficacy by drug resistance reversal. International Journal of Pharmaceutics, 498(1–2), 70–81. https://doi.org/10.1016/j.ijpharm.2015.12.003
Yamano, S., Dai, J., Yuvienco, C., Khapli, S., Moursi, A. M., & Montclare, J. K. (2011). Modified Tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis. Journal of Controlled Release, 152(2), 278–285. https://doi.org/10.1016/j.jconrel.2011.02.004
Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., Liu, X., Zhao, L., Dong, E., Song, C., Zhan, S., Lu, R., Li, H., Tan, W., & Liu, D. (2020). In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases, 71(15), 732–739. https://doi.org/10.1093/cid/ciaa237
Yoo, H., & Mok, H. (2015). Evaluation of multimeric siRNA conjugates for efficient protamine-based delivery into breast cancer cells. Archives of Pharmacal Research, 38(1), 129–136. https://doi.org/10.1007/s12272-014-0359-8
Zhang, L., Liu, S., Liu, H., Yang, C., Jiang, A., Wei, H., Sun, D., Cai, Z., & Zheng, Y. (2020). Versatile cationic liposomes for RIP3 overexpression in colon cancer therapy and RIP3 downregulation in acute pancreatitis therapy. Journal of Drug Targeting, 28(6), 627–642. https://doi.org/10.1080/1061186X.2019.1708370
Zhang, X., Dong, Y., Zeng, X., Liang, X., Li, X., Tao, W., Chen, H., Jiang, Y., Mei, L., & Feng, S. S. (2014a). The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials, 35(6), 1932–1943. https://doi.org/10.1016/j.biomaterials.2013.10.034
Zhang, X., Dong, Y., Zeng, X., Liang, X., Li, X., Tao, W., Chen, H., Jiang, Y., Mei, L., & Feng, S. S. (2014b). The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials, 35(6), 1932–1943. https://doi.org/10.1016/j.biomaterials.2013.10.034
Zhang, X., Zeng, X., Liang, X., Yang, Y., Li, X., Chen, H., Huang, L., Mei, L., & Feng, S. S. (2014). The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials, 35(33), 9144–9154. https://doi.org/10.1016/j.biomaterials.2014.07.028
Zhang, Y., Cao, Y., Sun, X., Feng, Y., Du, Y., Liu, F., Yu, C., & Jin, F. (2017). Chloroquine (CQ) exerts anti-breast cancer through modulating microenvironment and inducing apoptosis. International Immunopharmacology, 42, 100–107. https://doi.org/10.1016/j.intimp.2016.11.027
Zheng, Y., Su, C., Zhao, L., & Shi, Y. (2017). mAb MDR1-modified chitosan nanoparticles overcome acquired EGFR-TKI resistance through two potential therapeutic targets modulation of MDR1 and autophagy. Journal of Nanobiotechnology, 15(1). https://doi.org/10.1186/s12951-017-0302-5
Zhou, Z., Yan, Y., Hu, K., Zou, Y., Li, Y., Ma, R., Zhang, Q., & Cheng, Y. (2017). Autophagy inhibition enabled efficient photothermal therapy at a mild temperature. Biomaterials, 141, 116–124. https://doi.org/10.1016/j.biomaterials.2017.06.030
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Camila dos Reis Oliveira; Joedna Cavalcante Pereira; Lucas Vaz de Castro Oliveira; André Luis Menezes Carvalho
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.