Water salinity and salicylic acid on tomato plants growth
DOI:
https://doi.org/10.33448/rsd-v10i7.16630Keywords:
Solanum lycopersicon L; Saline stress; Phytohormone.Abstract
A tomate é uma das hortaliças mais importantes do mercado brasileiro. A produção dessa hortaliça pode ser limitada pelo excesso de sais na água utilizada para irrigação. O uso de fitormônios, como o ácido salicílico (AS), é utilizado para minimizar os efeitos negativos do excesso de sais nas plantas. O objetivo deste trabalho foi avaliar o efeito atenuante do ácido salicílico no crescimento de tomateiro irrigado com água salina. O delineamento experimental foi o de blocos ao acaso em esquema fatorial incompleto 5 (doses de AS: 0,0, 0,29, 1,0, 1,71 e 2,0 mM) x 5 (condutividades elétricas da água de irrigação - CEa: 0,5, 1,3, 3,25, 5,2 e 6 dS m-1), combinados de acordo com a matriz experimental Composto Central de Box, com quatro repetições e duas plantas por parcela experimental. As avaliações de crescimento foram realizadas 45 dias após o início da irrigação com água salina. Foram avaliados a altura da planta, número de folhas, diâmetro do caule, taxa de crescimento absoluto e relativo para altura da planta, massa seca da raiz, massa seca da parte aérea, massa seca total, índice de qualidade de Dickson, área foliar, área foliar específica e peso específico da folha. O crescimento do tomateiro foi reduzido pelo aumento da CEa. O ácido salicílico, aplicado exogenamente até 2,0 mM, não promoveu efeito atenuante da salinidade em tomateiro.
References
Abdelaal, K. A., El-Maghraby, L. M., Elansary, H., Hafez, Y. M., Ibrahim, E. I., El-Banna, M., El-Esawi, M., & Elkelish, A. (2019). Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy, 10(1): 26.
Alvarez-Acosta, C., Marrero-Dominguez, A., Gallo-Llobet, L., & Gonzalez-Rodriguez, A. M. (2019). Effects of NaCl and NaHCO3 stress on morphological growth and nutrient metabolism on selected avocados (Persea americana Mill.). Journal Plant Nutrition, 42(2): 164-177.
Acosta-Motos, J. R., Ortuño M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanches-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1): 1-38.
Akbar, A., Hussain, S., Ullah, M., & Ali, G. S. (2018). Detection, virulence and genetic diversity of fusarium species infecting tomato in Northern Pakistan. Plos One, 13(9): e0203613.
Benincasa, M. M. P. (2003). Análise de crescimento de plantas, noções básicas. FUNEP, Jaboticabal.
Blanco, F. F., & Folegatti, M. V. (2003). A new method for estimating the leaf area index of cucumber and tomato plants. Horticultura Brasileira, 21(4): 666-669.
Carbonell, P., Salinas, J. F., Alonso, A., Grau, A., Cabrera, J. A., García-Martínez, S., & Ruiz, J. J. (2020). Effect of low inputs and salinity on yield and quality – A 3 year study in virus-resistant tomato (Solanum lycopersicum L.) breeding lines and hybrids. Scientia Horticulturae 260: 108889.
Charfeddine, S., Charfeddine, M., Hanana, M., & Gargouri-Bouzid, R. (2018). Ectopic expression of a grape vine vacuolar NHX antiporter enhances transgenic potato plant tolerance to salinity. Journal of Plant Biochemistry and Biotecnology, 28(1): 50-62.
Dickson, A., Leaf, A. L., & Hosner J. F. (1960). Quality appraisal of white spruce and white pine seedling stock in nurseries. Forestry Chronicle, 36(1): 10-13.
El-Arroussi, H., Benhima, R., Elbaouchi, A., Sijilmassi, B., El-Mernissi. N., Aafsar, A., Meftah-Kadmiri, I., Bendaou, N., & Smouni, A. (2018). Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). Journal Applied Phycology, 30(5): 2929-2941.
El-Esawi, M. A., Elansary, H. O., El-Shanhorey, N. A., Abdel-Hamid, A. M. E., Ali, H. M., & Elshikh, M. S. (2017). Salicylic acid-regulated antioxidante mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers in Physiology, 8: 716.
Farhangi-Abriz, S., & Ghassemi-Golezani, K. (2018). How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants?. Ecotoxicology and Environmental Safety, 147: 1010–1016.
Gharbi, E., Lutts, S., Dailly, H., & Quinet, M. (2018). Comparison between the impacts of two different modes of salicylic acid application on tomato (Solanum lycopersicum) responses to salinity. Plant Signaling & Behavior, 13(5): e1469361.
He, F. L., Bao, A. K., Wang, S. M., & Jin, H. X. (2019). Nacl stimulates growth and alleviates drought stress in the salt-secreting xerophyte Reaumuria soongorica. Environmental and Experimental Botany, 162: 433-443.
Kaya, C., Ashraf, M., Alyemeni, M. N., & Ahmad, P. (2020). The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. Plant Physiology and Biochemistry, 147: 10-20.
Khalid, M. F., Hussain, S., Anjum, M. A., Ahmad, S., Ali, M. A., Ejaz, S., & Morillon, R. (2020). Better salinity tolerance in tetraploid vs diploid volkamer lemon seedlings is associated with robust antioxidant and osmotic adjustment mechanisms. Journal of Plant Physiology, 244: 153071.
Li, S., Li, Y., He, X., Li, Q., Liu, B., Ai, X., & Zhang, D. (2019). Response of water balance and nitrogen assimilation in cucumber seedlings to co2 enrichment and salt stress. Plant Physiology and Biochemistry, 139: 256-263.
Lofti, R., Ghassemi-Golezani, K., & Najafi, N. (2018). Grain filling and yield of mung bean affected by salicylic acid and silicon under salt stress. Journal of Plant Nutrition, 41(14):1778-1785.
Nazar, R., Umar, S., Khan, N. A., & Sareer, O. (2015). Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South African Journal of Botany, 98: 84-94.
Nóbrega, J. S., Figueiredo, F. R. A., Sousa, L. V., Ribeiro, J. E. S., Silva, T. I., Dias, T. J., Albuquerque, M. B., & Bruno, R. L. A. (2018). Effect of salicylic acid on the physiological quality of salt-stressed Cucumis melo seeds. Journal of Experimental Agriculture International, 23(6): 1-10.
Poór, P., Takács, Z., Bela, K., Czékus, Z., Szalai, G., & Tari, I. (2017). Prolonged dark period modulates the oxidative burst and enzymatic antioxidant systems in the leaves of salicylic acid-treated tomato. Journal of Plant Physiology, 213: 216–226.
Riaz, A., Rafique, M., Aftab, M., Qureshi, M. A., Javed, H., Mujeeb, F., & Akhtar, S. (2019). Mitigation of salinity in chickpea by plant growth promoting rhizobacteria and salicylic acid. Eurasian Journal of Soil Science, 8(3): 221-228.
Rodriguez-Ortega, W., Martinez, V., Nieves, M., Simón, I., Lindóm, V., Fernandez-Zapata, J. C., Martinez-Nicola, J. J., Cámara-Zapata, J. M., & García-Sanches, F. (2019). Agricultural and physiological responses of tomato plants grown in diferent soilless culture systems with saline water under greenhouse conditions. Scientific Reports, 9(1): 6733.
Rosadi, R. A. B., Senge, M., Suhandy, D., & Tusi, A. (2014). Te efect of EC levels of nutrient solution on the growth, yield, and quality of tomatoes (Solanum lycopersicum) under the hydroponic system. Journal of Agricultural Engineering and Biotechnology, 2: 7–12.
Silva, T. I., Nóbrega, J. S., Figueiredo, F. R. A., Sousa, L. V., Ribeiro, J. E. S., Bruno, R. L. A., Dias, T. J., & Albuquerque, M. B. (2018). Ocimum basilicum L. seeds quality as submitted to saline stress and salicylic acid. Journal of Agricultural Science, 10(5): 159-166.
Song, Y., Nakajima, T., Xu, D., Homma, K., & Kokubun, M. (2017). Genotypic variation in salinity tolerance and its association with nodulation and nitrogen uptake in soybean. Plant Production Science, 20(4): 490-498.
Wang, Y. H., Zang, G., Chen, Y., Gao, J., Sun, Y. R., Sun, M. F., & Chen, J. P. (2019). Exogenous application of gibberellic acid and ascorbic acid improved tolerance of okra seedlings to NaCl stress. Acta Physiologiae Plantarum, 41(6): 93.
Win, K. T., Tanaka, F., Okazaki, K., & Ohwaki, Y. (2018). The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiology and Biochemistry, 127: 599-607.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Jackson Silva Nóbrega; Francisco Romário Andrade Figueiredo; Toshik Iarley da Silva; João Everthon da Silva Ribeiro; Reynaldo Teodoro de Fátima; Jean Telvio Andrade Ferreira; Manoel Bandeira de Albuquerque; Thiago Jardelino Dias; Riselane de Lucena Alcântara Bruno
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.