Water salinity and salicylic acid on tomato plants growth

Authors

DOI:

https://doi.org/10.33448/rsd-v10i7.16630

Keywords:

Solanum lycopersicon L; Saline stress; Phytohormone.

Abstract

A tomate é uma das hortaliças mais importantes do mercado brasileiro. A produção dessa hortaliça pode ser limitada pelo excesso de sais na água utilizada para irrigação. O uso de fitormônios, como o ácido salicílico (AS), é utilizado para minimizar os efeitos negativos do excesso de sais nas plantas. O objetivo deste trabalho foi avaliar o efeito atenuante do ácido salicílico no crescimento de tomateiro irrigado com água salina. O delineamento experimental foi o de blocos ao acaso em esquema fatorial incompleto 5 (doses de AS: 0,0, 0,29, 1,0, 1,71 e 2,0 mM) x 5 (condutividades elétricas da água de irrigação - CEa: 0,5, 1,3, 3,25, 5,2 e 6 dS m-1), combinados de acordo com a matriz experimental Composto Central de Box, com quatro repetições e duas plantas por parcela experimental. As avaliações de crescimento foram realizadas 45 dias após o início da irrigação com água salina. Foram avaliados a altura da planta, número de folhas, diâmetro do caule, taxa de crescimento absoluto e relativo para altura da planta, massa seca da raiz, massa seca da parte aérea, massa seca total, índice de qualidade de Dickson, área foliar, área foliar específica e peso específico da folha. O crescimento do tomateiro foi reduzido pelo aumento da CEa. O ácido salicílico, aplicado exogenamente até 2,0 mM, não promoveu efeito atenuante da salinidade em tomateiro.

References

Abdelaal, K. A., El-Maghraby, L. M., Elansary, H., Hafez, Y. M., Ibrahim, E. I., El-Banna, M., El-Esawi, M., & Elkelish, A. (2019). Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy, 10(1): 26.

Alvarez-Acosta, C., Marrero-Dominguez, A., Gallo-Llobet, L., & Gonzalez-Rodriguez, A. M. (2019). Effects of NaCl and NaHCO3 stress on morphological growth and nutrient metabolism on selected avocados (Persea americana Mill.). Journal Plant Nutrition, 42(2): 164-177.

Acosta-Motos, J. R., Ortuño M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanches-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1): 1-38.

Akbar, A., Hussain, S., Ullah, M., & Ali, G. S. (2018). Detection, virulence and genetic diversity of fusarium species infecting tomato in Northern Pakistan. Plos One, 13(9): e0203613.

Benincasa, M. M. P. (2003). Análise de crescimento de plantas, noções básicas. FUNEP, Jaboticabal.

Blanco, F. F., & Folegatti, M. V. (2003). A new method for estimating the leaf area index of cucumber and tomato plants. Horticultura Brasileira, 21(4): 666-669.

Carbonell, P., Salinas, J. F., Alonso, A., Grau, A., Cabrera, J. A., García-Martínez, S., & Ruiz, J. J. (2020). Effect of low inputs and salinity on yield and quality – A 3 year study in virus-resistant tomato (Solanum lycopersicum L.) breeding lines and hybrids. Scientia Horticulturae 260: 108889.

Charfeddine, S., Charfeddine, M., Hanana, M., & Gargouri-Bouzid, R. (2018). Ectopic expression of a grape vine vacuolar NHX antiporter enhances transgenic potato plant tolerance to salinity. Journal of Plant Biochemistry and Biotecnology, 28(1): 50-62.

Dickson, A., Leaf, A. L., & Hosner J. F. (1960). Quality appraisal of white spruce and white pine seedling stock in nurseries. Forestry Chronicle, 36(1): 10-13.

El-Arroussi, H., Benhima, R., Elbaouchi, A., Sijilmassi, B., El-Mernissi. N., Aafsar, A., Meftah-Kadmiri, I., Bendaou, N., & Smouni, A. (2018). Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). Journal Applied Phycology, 30(5): 2929-2941.

El-Esawi, M. A., Elansary, H. O., El-Shanhorey, N. A., Abdel-Hamid, A. M. E., Ali, H. M., & Elshikh, M. S. (2017). Salicylic acid-regulated antioxidante mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers in Physiology, 8: 716.

Farhangi-Abriz, S., & Ghassemi-Golezani, K. (2018). How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants?. Ecotoxicology and Environmental Safety, 147: 1010–1016.

Gharbi, E., Lutts, S., Dailly, H., & Quinet, M. (2018). Comparison between the impacts of two different modes of salicylic acid application on tomato (Solanum lycopersicum) responses to salinity. Plant Signaling & Behavior, 13(5): e1469361.

He, F. L., Bao, A. K., Wang, S. M., & Jin, H. X. (2019). Nacl stimulates growth and alleviates drought stress in the salt-secreting xerophyte Reaumuria soongorica. Environmental and Experimental Botany, 162: 433-443.

Kaya, C., Ashraf, M., Alyemeni, M. N., & Ahmad, P. (2020). The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. Plant Physiology and Biochemistry, 147: 10-20.

Khalid, M. F., Hussain, S., Anjum, M. A., Ahmad, S., Ali, M. A., Ejaz, S., & Morillon, R. (2020). Better salinity tolerance in tetraploid vs diploid volkamer lemon seedlings is associated with robust antioxidant and osmotic adjustment mechanisms. Journal of Plant Physiology, 244: 153071.

Li, S., Li, Y., He, X., Li, Q., Liu, B., Ai, X., & Zhang, D. (2019). Response of water balance and nitrogen assimilation in cucumber seedlings to co2 enrichment and salt stress. Plant Physiology and Biochemistry, 139: 256-263.

Lofti, R., Ghassemi-Golezani, K., & Najafi, N. (2018). Grain filling and yield of mung bean affected by salicylic acid and silicon under salt stress. Journal of Plant Nutrition, 41(14):1778-1785.

Nazar, R., Umar, S., Khan, N. A., & Sareer, O. (2015). Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South African Journal of Botany, 98: 84-94.

Nóbrega, J. S., Figueiredo, F. R. A., Sousa, L. V., Ribeiro, J. E. S., Silva, T. I., Dias, T. J., Albuquerque, M. B., & Bruno, R. L. A. (2018). Effect of salicylic acid on the physiological quality of salt-stressed Cucumis melo seeds. Journal of Experimental Agriculture International, 23(6): 1-10.

Poór, P., Takács, Z., Bela, K., Czékus, Z., Szalai, G., & Tari, I. (2017). Prolonged dark period modulates the oxidative burst and enzymatic antioxidant systems in the leaves of salicylic acid-treated tomato. Journal of Plant Physiology, 213: 216–226.

Riaz, A., Rafique, M., Aftab, M., Qureshi, M. A., Javed, H., Mujeeb, F., & Akhtar, S. (2019). Mitigation of salinity in chickpea by plant growth promoting rhizobacteria and salicylic acid. Eurasian Journal of Soil Science, 8(3): 221-228.

Rodriguez-Ortega, W., Martinez, V., Nieves, M., Simón, I., Lindóm, V., Fernandez-Zapata, J. C., Martinez-Nicola, J. J., Cámara-Zapata, J. M., & García-Sanches, F. (2019). Agricultural and physiological responses of tomato plants grown in diferent soilless culture systems with saline water under greenhouse conditions. Scientific Reports, 9(1): 6733.

Rosadi, R. A. B., Senge, M., Suhandy, D., & Tusi, A. (2014). Te efect of EC levels of nutrient solution on the growth, yield, and quality of tomatoes (Solanum lycopersicum) under the hydroponic system. Journal of Agricultural Engineering and Biotechnology, 2: 7–12.

Silva, T. I., Nóbrega, J. S., Figueiredo, F. R. A., Sousa, L. V., Ribeiro, J. E. S., Bruno, R. L. A., Dias, T. J., & Albuquerque, M. B. (2018). Ocimum basilicum L. seeds quality as submitted to saline stress and salicylic acid. Journal of Agricultural Science, 10(5): 159-166.

Song, Y., Nakajima, T., Xu, D., Homma, K., & Kokubun, M. (2017). Genotypic variation in salinity tolerance and its association with nodulation and nitrogen uptake in soybean. Plant Production Science, 20(4): 490-498.

Wang, Y. H., Zang, G., Chen, Y., Gao, J., Sun, Y. R., Sun, M. F., & Chen, J. P. (2019). Exogenous application of gibberellic acid and ascorbic acid improved tolerance of okra seedlings to NaCl stress. Acta Physiologiae Plantarum, 41(6): 93.

Win, K. T., Tanaka, F., Okazaki, K., & Ohwaki, Y. (2018). The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiology and Biochemistry, 127: 599-607.

Published

26/06/2021

How to Cite

NÓBREGA, J. S.; FIGUEIREDO, F. R. A.; SILVA, T. I. da; RIBEIRO, J. E. da S. .; FÁTIMA, R. T. de; FERREIRA, J. T. A. .; ALBUQUERQUE, M. B. de; DIAS, T. J.; BRUNO, R. de L. A. . Water salinity and salicylic acid on tomato plants growth. Research, Society and Development, [S. l.], v. 10, n. 7, p. e41210716630, 2021. DOI: 10.33448/rsd-v10i7.16630. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16630. Acesso em: 22 nov. 2024.

Issue

Section

Agrarian and Biological Sciences