Salinidade da água e ácido salicílico no crescimento de plantas de tomate
DOI:
https://doi.org/10.33448/rsd-v10i7.16630Palavras-chave:
Solanum lycopersicon L; Estresse salino; Fitohôrmonio.Resumo
The tomato is one of the most important vegetables in Brazilian market. The production of this vegetable can be limited by the excess of salts in the water used for irrigation. The use of phytohormones, such as salicylic acid (SA), is used to minimize the negative effects of excess salts on plants. The objective of this paper was to evaluate the attenuating effect of salicylic acid on tomato plants growth irrigated with saline water. The experimental design was the randomized blocks in an incomplete factorial scheme 5 (SA doses: 0.0, 0.29, 1.0, 1.71 and 2.0 mM) x 5 (electrical conductivities of irrigation water - ECw: 0.5, 1.3, 3.25, 5.2 and 6 dS m-1), combined according to the experimental matrix Central Compound of Box, with four replicates and two plants per experimental plot. Growth evaluations were performed 45 days after the beginning of irrigation with saline water. Plant height, number of leaves, stem diameter, absolute and relative growth rate for plant height, root dry mass, shoot dry mass, total dry mass, Dickson's quality index, leaf area, specific leaf area and specific leaf weight were evaluated. The tomato plants growth was reduced by the increase in ECw. Salicylic acid, applied exogenously up to 2.0 mM, did not promote attenuating effect of salinity on tomato plants.
Referências
Abdelaal, K. A., El-Maghraby, L. M., Elansary, H., Hafez, Y. M., Ibrahim, E. I., El-Banna, M., El-Esawi, M., & Elkelish, A. (2019). Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy, 10(1): 26.
Alvarez-Acosta, C., Marrero-Dominguez, A., Gallo-Llobet, L., & Gonzalez-Rodriguez, A. M. (2019). Effects of NaCl and NaHCO3 stress on morphological growth and nutrient metabolism on selected avocados (Persea americana Mill.). Journal Plant Nutrition, 42(2): 164-177.
Acosta-Motos, J. R., Ortuño M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanches-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1): 1-38.
Akbar, A., Hussain, S., Ullah, M., & Ali, G. S. (2018). Detection, virulence and genetic diversity of fusarium species infecting tomato in Northern Pakistan. Plos One, 13(9): e0203613.
Benincasa, M. M. P. (2003). Análise de crescimento de plantas, noções básicas. FUNEP, Jaboticabal.
Blanco, F. F., & Folegatti, M. V. (2003). A new method for estimating the leaf area index of cucumber and tomato plants. Horticultura Brasileira, 21(4): 666-669.
Carbonell, P., Salinas, J. F., Alonso, A., Grau, A., Cabrera, J. A., García-Martínez, S., & Ruiz, J. J. (2020). Effect of low inputs and salinity on yield and quality – A 3 year study in virus-resistant tomato (Solanum lycopersicum L.) breeding lines and hybrids. Scientia Horticulturae 260: 108889.
Charfeddine, S., Charfeddine, M., Hanana, M., & Gargouri-Bouzid, R. (2018). Ectopic expression of a grape vine vacuolar NHX antiporter enhances transgenic potato plant tolerance to salinity. Journal of Plant Biochemistry and Biotecnology, 28(1): 50-62.
Dickson, A., Leaf, A. L., & Hosner J. F. (1960). Quality appraisal of white spruce and white pine seedling stock in nurseries. Forestry Chronicle, 36(1): 10-13.
El-Arroussi, H., Benhima, R., Elbaouchi, A., Sijilmassi, B., El-Mernissi. N., Aafsar, A., Meftah-Kadmiri, I., Bendaou, N., & Smouni, A. (2018). Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). Journal Applied Phycology, 30(5): 2929-2941.
El-Esawi, M. A., Elansary, H. O., El-Shanhorey, N. A., Abdel-Hamid, A. M. E., Ali, H. M., & Elshikh, M. S. (2017). Salicylic acid-regulated antioxidante mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers in Physiology, 8: 716.
Farhangi-Abriz, S., & Ghassemi-Golezani, K. (2018). How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants?. Ecotoxicology and Environmental Safety, 147: 1010–1016.
Gharbi, E., Lutts, S., Dailly, H., & Quinet, M. (2018). Comparison between the impacts of two different modes of salicylic acid application on tomato (Solanum lycopersicum) responses to salinity. Plant Signaling & Behavior, 13(5): e1469361.
He, F. L., Bao, A. K., Wang, S. M., & Jin, H. X. (2019). Nacl stimulates growth and alleviates drought stress in the salt-secreting xerophyte Reaumuria soongorica. Environmental and Experimental Botany, 162: 433-443.
Kaya, C., Ashraf, M., Alyemeni, M. N., & Ahmad, P. (2020). The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. Plant Physiology and Biochemistry, 147: 10-20.
Khalid, M. F., Hussain, S., Anjum, M. A., Ahmad, S., Ali, M. A., Ejaz, S., & Morillon, R. (2020). Better salinity tolerance in tetraploid vs diploid volkamer lemon seedlings is associated with robust antioxidant and osmotic adjustment mechanisms. Journal of Plant Physiology, 244: 153071.
Li, S., Li, Y., He, X., Li, Q., Liu, B., Ai, X., & Zhang, D. (2019). Response of water balance and nitrogen assimilation in cucumber seedlings to co2 enrichment and salt stress. Plant Physiology and Biochemistry, 139: 256-263.
Lofti, R., Ghassemi-Golezani, K., & Najafi, N. (2018). Grain filling and yield of mung bean affected by salicylic acid and silicon under salt stress. Journal of Plant Nutrition, 41(14):1778-1785.
Nazar, R., Umar, S., Khan, N. A., & Sareer, O. (2015). Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South African Journal of Botany, 98: 84-94.
Nóbrega, J. S., Figueiredo, F. R. A., Sousa, L. V., Ribeiro, J. E. S., Silva, T. I., Dias, T. J., Albuquerque, M. B., & Bruno, R. L. A. (2018). Effect of salicylic acid on the physiological quality of salt-stressed Cucumis melo seeds. Journal of Experimental Agriculture International, 23(6): 1-10.
Poór, P., Takács, Z., Bela, K., Czékus, Z., Szalai, G., & Tari, I. (2017). Prolonged dark period modulates the oxidative burst and enzymatic antioxidant systems in the leaves of salicylic acid-treated tomato. Journal of Plant Physiology, 213: 216–226.
Riaz, A., Rafique, M., Aftab, M., Qureshi, M. A., Javed, H., Mujeeb, F., & Akhtar, S. (2019). Mitigation of salinity in chickpea by plant growth promoting rhizobacteria and salicylic acid. Eurasian Journal of Soil Science, 8(3): 221-228.
Rodriguez-Ortega, W., Martinez, V., Nieves, M., Simón, I., Lindóm, V., Fernandez-Zapata, J. C., Martinez-Nicola, J. J., Cámara-Zapata, J. M., & García-Sanches, F. (2019). Agricultural and physiological responses of tomato plants grown in diferent soilless culture systems with saline water under greenhouse conditions. Scientific Reports, 9(1): 6733.
Rosadi, R. A. B., Senge, M., Suhandy, D., & Tusi, A. (2014). Te efect of EC levels of nutrient solution on the growth, yield, and quality of tomatoes (Solanum lycopersicum) under the hydroponic system. Journal of Agricultural Engineering and Biotechnology, 2: 7–12.
Silva, T. I., Nóbrega, J. S., Figueiredo, F. R. A., Sousa, L. V., Ribeiro, J. E. S., Bruno, R. L. A., Dias, T. J., & Albuquerque, M. B. (2018). Ocimum basilicum L. seeds quality as submitted to saline stress and salicylic acid. Journal of Agricultural Science, 10(5): 159-166.
Song, Y., Nakajima, T., Xu, D., Homma, K., & Kokubun, M. (2017). Genotypic variation in salinity tolerance and its association with nodulation and nitrogen uptake in soybean. Plant Production Science, 20(4): 490-498.
Wang, Y. H., Zang, G., Chen, Y., Gao, J., Sun, Y. R., Sun, M. F., & Chen, J. P. (2019). Exogenous application of gibberellic acid and ascorbic acid improved tolerance of okra seedlings to NaCl stress. Acta Physiologiae Plantarum, 41(6): 93.
Win, K. T., Tanaka, F., Okazaki, K., & Ohwaki, Y. (2018). The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiology and Biochemistry, 127: 599-607.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Jackson Silva Nóbrega; Francisco Romário Andrade Figueiredo; Toshik Iarley da Silva; João Everthon da Silva Ribeiro; Reynaldo Teodoro de Fátima; Jean Telvio Andrade Ferreira; Manoel Bandeira de Albuquerque; Thiago Jardelino Dias; Riselane de Lucena Alcântara Bruno
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.