Immunological aspects associated with uterine transplantation: Surgical innovation in the treatment of uterine factor infertility
DOI:
https://doi.org/10.33448/rsd-v10i8.16657Keywords:
AUFI; Uterine transplantation; Immune response.Abstract
Absolute uterine factor infertility (AUFI) refers to women who are unable to conceive or maintain pregnancy due to the absence of the uterus or the presence of an anatomically or physiologically dysfunctional uterus. New strategies have been sought in recent decades to solve this problem, such as uterine transplantation. However, little is known about uterine immunogenicity and there is little data on the immune response to transplanted uterine tissue. Thus, this study aimed to demonstrate how the body's immune response to uterine transplantation can occur through a literature review. For that, a search was carried out in the SciELO, LILACS, PubMed / MEDLINE and Science Direct databases. According to the data obtained, it is believed that the uterus is an immunoprivileged organ in relation to the rapid immune response exerted by the organism, however the experiences of allogeneic uterine transplantation showed rejection patterns similar to those observed in other solid organ transplants. In general, rejection was characterized by myometrial invasion by neutrophils and macrophages, followed by T cells (mainly CD8 +), followed by necrosis, atrophy and fibrosis. This response has a unique characteristic of being mediated by interactions of the T cell receptor (TCR) with molecules of the donor's own MHC system. Therefore, with this study it was possible to understand how the possible immune response to uterine transplantation would occur, which can lead to the rejection process.
References
Ali, J. M., Negus, M. C., Conlon, T. M., Harper, I. G., Qureshi, M. S., Motallebzadeh, R., … Pettigrew, G. J. (2016). Diversity of the CD4 T Cell Alloresponse : The Short and the Long of It. Cell Reports, 14(5), 1232–1245. https://doi.org/https://doi.org/10.1016/j.celrep.2015.12.099
Brännström, M. (2019). Introduction: Uterus transplantation. Fertility and Sterility, 112(1), 1–2. https://doi.org/10.1016/j.fertnstert.2019.05.032
Brännström, M., & Dahm-Kähler, P. (2019). Uterus transplantation and fertility preservation. Best Practice & Research Clinical Obstetrics & Gynaecology, 55, 109–116. https://doi.org/10.1016/j.bpobgyn.2018.12.006
Brännström, M., Dahm Kähler, P., Greite, R., Mölne, J., Díaz-García, C., & Tullius, S. G. (2018). Uterus Transplantation: a rapidly expanding field. Transplantation, 102(4), 569–577. https://doi.org/10.1097/TP.0000000000002035
Carvalho, M. T. F. M. de. (2016). Transplante uterino (Universidade de Lisboa). Retrieved from http://repositorio.ul.pt/bitstream/10451/26289/1/CarlotaJSMendonça.pdf
Erlebacher, A. (2013). Mechanisms of T cell tolerance towards the allogeneic fetus. Nature Reviews Immunology, 13(1), 23–33. https://doi.org/10.1038/nri3361
Fageeh, W., Raffa, H., Jabbad, H., & Marzouki, A. (2002). Transplantation of the human uterus. International Journal of Gynecology & Obstetrics, 76(3), 245–251. https://doi.org/10.1016/S0020-7292(01)00597-5
Flyckt, R., Davis, A., Farrell, R., Zimberg, S., Tzakis, A., & Falcone, T. (2018). Uterine Transplantation: Surgical Innovation in the Treatment of Uterine Factor Infertility. Journal of Obstetrics and Gynaecology Canada, 40(1), 86–93. https://doi.org/10.1016/j.jogc.2017.06.018
Game, D. S., & Lechler, R. I. (2002). Pathways of allorecognition: implications for transplantation tolerance. Transplant Immunology, 10(2–3), 101–108. https://doi.org/10.1016/S0966-3274(02)00055-2
Gauthier, T., Filloux, M., Guillaudeau, A., Essig, M., Bibes, R., Pacha, A. F., … Drouet, M. (2016). Uterus human leucocyte antigen expression in the perspective of transplantation. Journal of Obstetrics and Gynaecology Research, 42(12), 1789–1795. https://doi.org/10.1111/jog.13107
Goldstein, D. R., Tesar, B. M., Akira, S., & Lakkis, F. G. (2003). Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. 111(10), 1571–1578. https://doi.org/10.1172/JCI17573
Groth, K., Akouri, R., Wranning, C. A., Molne, J., & Brannstrom, M. (2009). Rejection of allogenic uterus transplant in the mouse: time-dependent and site-specific infiltration of leukocyte subtypes. Human Reproduction, 24(11), 2746–2754. https://doi.org/10.1093/humrep/dep248
Groth, Klaus, Akhi, S. N., Mölne, J., Wranning, C. A., & Brännström, M. (2012). Effects of immunosuppression by cyclosporine A on allogenic uterine transplant in the rat. European Journal of Obstetrics & Gynecology and Reproductive Biology, 163(1), 97–103. https://doi.org/10.1016/j.ejogrb.2012.03.026
Herlin, M., Bjørn, A.-M. B., Rasmussen, M., Trolle, B., & Petersen, M. B. (2016). Prevalence and patient characteristics of Mayer–Rokitansky–Küster–Hauser syndrome: a nationwide registry-based study. Human Reproduction, 31(10), 2384–2390. https://doi.org/10.1093/humrep/dew220
Johannesson, L., Dahm-Kähler, P., Eklind, S., & Brännström, M. (2014). The Future of Human Uterus Transplantation. Women’s Health, 10(4), 455–467. https://doi.org/10.2217/WHE.14.22
MA, Q., JL, B., F, O., P, M., U, B., WT, C., … S, P. (1934). Carcinoma of the cervix uteri. The American Journal of Surgery, 23(3), 413–418. https://doi.org/10.1016/S0002-9610(34)90617-6
Marino, J., Babiker-mohamed, M. H., Crosby-bertorini, P., Joshua, T., Leguern, C., Germana, S., … Benichou, G. (2016). Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Science Immunology, 1(1), 1–21. https://doi.org/10.1126/sciimmunol.aaf8759.Donor
Menge, A. C., & Mestecky, J. (1993). Surface expression of secretory component and HLA class II DR antigen on glandular epithelial cells from human endometrium and two endometrial adenocarcinoma cell lines. Journal of Clinical Immunology, 13(4), 259–264. https://doi.org/10.1007/BF00919384
Moffett, A., & Loke, C. (2006). Immunology of placentation in eutherian mammals. Nature Reviews Immunology, 6(8), 584–594. https://doi.org/10.1038/nri1897
Namazov, A., Karakus, R., Gencer, E., Sozen, H., & Acar, L. (2015). Do submucous myoma characteristics affect fertility and menstrual outcomes in patients underwent hysteroscopic myomectomy? Iranian Journal of Reproductive Medicine, 13(6), 367–372.
Obara, H., Nagasaki, K., Hsieh, C. L., Ogura, Y., Esquivel, C. O., Martinez, O. M., & Krams, S. M. (2005). IFN-gamma, Produced by NK Cells that Infiltrate Liver Allografts Early After Transplantation, Links the Innate and Adaptive Immune Responses. American Journal of Transplantation, 5(9), 2094–2103. https://doi.org/10.1111/j.1600-6143.2005.00995.x
Ozkan, O., Akar, M. E., Ozkan, O., Erdogan, O., Hadimioglu, N., Yilmaz, M., … Suleymanlar, G. (2013). Preliminary results of the first human uterus transplantation from a multiorgan donor. Fertility and Sterility, 99(2), 470-476.e5. https://doi.org/10.1016/j.fertnstert.2012.09.035
Richards, E. G., Agatisa, P. K., Davis, A. C., Flyckt, R., Mabel, H., Falcone, T., … Farrell, R. M. (2019). Framing the diagnosis and treatment of absolute uterine factor infertility: Insights from in-depth interviews with uterus transplant trial participants. AJOB Empirical Bioethics, 10(1), 23–35. https://doi.org/10.1080/23294515.2019.1572672
Saravelos, S. H., Cocksedge, K. A., & Li, T.-C. (2008). Prevalence and diagnosis of congenital uterine anomalies in women with reproductive failure: a critical appraisal. Human Reproduction Update, 14(5), 415–429. https://doi.org/10.1093/humupd/dmn018
Siu, J. H. Y., Surendrakumar, V., Richards, J. A., & Pettigrew, G. J. (2018). T cell Allorecognition Pathways in Solid Organ Transplantation. Frontiers in Immunology, 9(NOV), 1–14. https://doi.org/10.3389/fimmu.2018.02548
Taglauer, E. S., Adams Waldorf, K. M., & Petroff, M. G. (2010). The hidden maternal-fetal interface: events involving the lymphoid organs in maternal-fetal tolerance. The International Journal of Developmental Biology, 54(2–3), 421–430. https://doi.org/10.1387/ijdb.082800et
Tesar, B. M., Zhang, J., Li, Q., & Goldstein, D. R. (2004). TH1 Immune Responses to Fully MHC Mismatched Allografts are Diminished in the Absence of MyD88 , a Toll-Like Receptor Signal Adaptor Protein. American Journal of Transplantation, 4, 1429–1439. https://doi.org/10.1111/j.1600-6143.2004.00544.x
Wranning, C. A., El-Akouri, R. R., Groth, K., Mölne, J., Parra, A. K., & Brännström, M. (2007). Rejection of the transplanted uterus is suppressed by cyclosporine A in a semi-allogeneic mouse model. Human Reproduction, 22(2), 372–379. https://doi.org/10.1093/humrep/del410
Zhao, D., Abou-Daya, K. I., Dai, H., Oberbarnscheidt, M. H., Li, X. C., & Lakkis, F. G. (2020). Innate Allorecognition and Memory in Transplantation. Frontiers in Immunology, 11(May), 1–7. https://doi.org/10.3389/fimmu.2020.00918
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Isabel Maria Alves de Aguiar Xavier; Joyce Modesto Cordeiro ; Luan Kelves Miranda de Souza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.