Evaluation of the antimicrobial activity of poultry feed additives with zinc oxide nanoparticles

Authors

DOI:

https://doi.org/10.33448/rsd-v10i7.16830

Keywords:

Feed for broiler poultry; NPs-ZnO; Antibacterial activity; Salmonella Typhimurium; Staphylococcus aureus.

Abstract

The presence of pathogenic bacteria such as Salmonella spp and Staphylococcus aureus in poultry houses results in huge economic losses, influencing the performance and quality of broiler chicken. These bacteria cause food poisoning due to the consumption of foods containing thermostable enterotoxins produced by them. Studies show that antibiotics used in poultry can cause allergic reactions to humans in addition to increasing bacterial resistance to treatment. Zinc oxide nanoparticles, NPs-ZnO, have been studied because of their excellent antimicrobial potential and because zinc oxide is recognized as a safe substance for consumption at low concentrations. In addition zinc is a micronutrient metabolized by the poultry organism and humans, not being a toxic substance. So the objective of this study was to add antimicrobial properties to poultry feed by the addition of NPs-ZnO and to evaluate antibacterial activity against Gram-negative Salmonella Typhimurium and Gram-positive Staphylococcus aureus bacteria. Different ratios of NPs-ZnO in the diet (1, 2, 3, 4 and 5%, mg g-1) were evaluated by solid diffusion, minimum inhibitory concentration and growth curve. It was found that the concentration of 3% (mg g-1) of NPs-ZnO was the lowest necessary to prevent the growth of studied bacteria being able to be applied in poultry feed to protect them from potential pathogenic bacteria present in the farms.

References

Aanchal, J., Richa B., & Pankaj, P. (2013). Probing interaction of Gram-positive and Gram-negative bacterial cells with ZnO nanorods. Materials Science and Engineering: C, 33 (3), 1247–1253. http://dx.doi.org/10.1016/j.msec.2012.12.019.

ABPA. Associação Brasileira de Proteína Animal. (2021). Relatório Anual 2021. http://abpa-br.com.br/storage/files/relatorio-anual-2020.pdf.

Akbar, A., & Kumar, A. A. (2014). Zinc oxide nanoparticles loaded active packaging, a challenge study against S. Typhimurium and Staphylococcus aureus in readyto- eat poultry meat. Elsevie- Food Control, 38, 88-95. http://dx. doi.org/10.1016/j.foodcont.2013.09.065.

Alves, T. M. A., Silva, A. F., Brandão, M., Grandi, T. S., Smânia, E. F., Smânia, Jr. A., & Zani, C. L. (2000). Biological screening of Brazilian medicinal plants. Mem. Inst. Oswaldo Cruz, 95 (3), 367-373. http://dx. doi.org/10.1590/S0074-02762000000300012.

Amiranashvili, L. L., Gagelidze, N. A., Varsimashvili, K. I., Tinikashvili, L. M., Tolordava, L. L., Gamkrelidze, M. D., Amashukeli, N. V., & Makaradze, L. A. (2016). Antimicrobial susceptibility and antibiotic resistance profiles of cultivable lactic acid bacteria from intestinal tract of domestic chickens collected in Adjara. Annals of agrarian science, 14 (3), 182-186. http://dx. doi.org/10.1016/j.aasci.2016.08.001.

Antonelli, P., Belluco, S., Mancin, M., Losasso, C., & Ricci, A. (2019). Genes conferring resistance to critically important antimicrobials in Salmonella enterica isolated from animals and food: A systematic review of the literature, 2013–2017. Research in Veterinary Science, 126, 59–67. http:// doi: 10.1016/j.rvsc.2019.08.022.

AOAC, Official Method 997. 02. (2019). Yeast and mold counts in foods dry rehydratable film (Method Petrifilm tm). Official Method of Analysis, 21st Edition, 2019, Chapter 17, p. 19-21.

Balasubramanian, P., Strobel, L. A., Kneser, U., & Boccaccini, A. R. (2015). Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications. Biomedical Glasses, 1, 51-69. https://doi.org/10.1515/bglass-2015-0006.

Beigmohammadi, F., Peighambardoust, S. H., Hesari, J., Azadmard-Damirchi, S., Peighambardoust, S. J., & Khosrowshahic, N. K. (2016). Antibacterial properties of LDPE nanocomposite films in packaging of UF cheese. LWT Food Science and Technology, 65, 106-111. https://doi.org/10.1016/j.lwt.2015.07.059.

Boni, H. F. K., Carrijo, A. S., & Fascina, V. B. (2011). Ocorrência de Salmonella spp. em aviários e abatedouro de frangos de corte na região central de Mato Grosso do Sul. Revista Brasileira de Saúde e Produção Animal, 12 (1), 84-95.

Bonilla, A. M. & García, M. F. (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science, 37, 281– 339. https://doi.org/10.1016/j.progpolymsci.2011.08.005.

Borges, K., Furian, T., Gehlen, S. S., Tondo, E. C., Streck, A., Salle, C., Moraes. H. S., & Nascimento, V. P. (2017). Spread of a major clone of Salmonella Enteritidis in poultry and in salmonellosis outbreaks in southern Brazil. Journal of Food Protection, 80, 158-163. http://dx.doi:10.4315/0362-028X.JFP-16-299.

Brasil, Ministério da Agricultura, Pecuária e Abastecimento/Secretaria de Defesa Agropecuária. (2018). Portaria nº 171, de 13 de dezembro de 2018. BRASIL. http://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/55878469/do1-2018-12-19-portaria-n-171-de-13-de-dezembro-de-2018-55878239.

Brasil, Ministério da Agricultura e Abastecimento. (2005). Sindicato Nacional da Indústria de Alimentação Animal. Associação Nacional dos Fabricantes de Rações. Compêndio brasileiro de alimentação animal. São Paulo: ANFAR/CBNA/SDR, p. 204.

Brasil, Ministério da Agricultura, Pecuária e Abastecimento – MAPA. INSTRUÇÃO NORMATIVA Nº 45, DE 22 DE NOVMBRO DE 2016. Brasil, 2016. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/22078290/do1-2016-11-30-instrucao-normativa-n-45-de-22-de-novembro-de-2016-22078259.

Brasil, Ministério da Agricultura, Pecuária e Abastecimento (MAPA). INSTRUÇÃO NORMATIVA Nº 26, DE 9 DE JULHO DE 2009. (2009). Regulamento técnico para a fabricação, o controle de qualidade, a comercialização e o emprego de produtos antimicrobianos de uso veterinário. Brasil. http://www.agricultura.gov.br/animal/alimentacao/aditivos/aditivos-autorizadossso.

Busi, S. Rajkumari, J., Pattnaik, S., Parasuraman, P., & Hnamte, S. (2016). Extracellular synthesis of zinc oxide nanoparticles using acinetobacter schindleri siz7 and its antimicrobial property against foodborne pathogens. Journal Microbiology, Biotechnology and Food Sciences, 5 (5), 407-411. https://doi.10.15414/JMBFS.2016.5.5.407-411.

Capelezzo, A. P., Mohr, L. C., Dalcanton, F., Barreta, C. R. D. M., Martinsi, M. A. P. M., Fiori, M. A., & Mello, J. M. M. (2018). Antimicrobial biodegradable polymer through additivation with zinc based compounds. Química Nova, 41 (4), 367-374. http://dx.doi.org/10.21577/0100-4042.20170187.

Carvalho Júnior, L.C., & Giarola, P.C.M. (2020). Um retrato da cadeia produtiva de carne avícola em Santa Catarina e no Brasil no início do século XXI. Revista Americana de Empreendedorismo e Inovação, 2 (2), 141-150.

Carvalho, A. C. F. B., Cortez, B. M., Salotti, K. P., Bürger, A. M. C., & Vidal-Martins. (2005). Presença de microrganismos mesófilos, psicrotróficos e coliformes em diferentes amostras de produtos avícolas. Arquivos do Instituto de Biologia, 72 (3), 303-307.

CLSI – Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptible tests; Approved standard – Eleventh Edition. (2012). CLSI document M02-A11. Wayne, Pennsylvania.

Costa Leite, P. R. de S. da., Mendes, F. R., Pereira, M. L. R., Lima, H. J. D’A., & Lacerda, M. J. R. (2012). Aditivos fitogênicos em rações de frangos. Enciclopédia Biosfera, Centro Científico Conhecer, 8 (15), 09-26.

Dantas, J., Leal, E., Mapossa, A. B., Silva, A. S., & Costa, A. C. F. M. (2016). Síntese, caracterização e performance catalítica de nanoferritas mistas submetidas a reação de transesterificação e esterificação via rota metílica e etílica para biodiesel. Revista Matéria, 21 (4) ,1080-1093. https://doi.org/10.1590/S1517-707620160004.0099.

Divya, M. J., Sowmia, C., Joona, K., & Dhanya, K. P. (2013). Synthesis of zinc oxide nanoparticle from Hibiscus rosa-sinensis leaf extract and investigation of its antimicrobial activity. Research Journal of Pharmaceutical, Biological and Chemical, 4 (2), 1137-1142.

Dobrucka, R., & Dugaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences. 23 (4), 517–523. https://doi.org/10.1016/j.sjbs.2015.05.016.

Doumbia, A. S., Vezin, H., Ferreira, M., Campagne, C., & Devaux, E. (2015). Studies of Polylactide/Zinc Oxide Nanocomposites: Influence of Surface Treatment on Zinc Oxide Antibacterial Activities in Textile Nanocomposites. Journal of Applied Polymer Science, 132 (17). https://doi.org/10.1002/app.41776.

El Asbahani, A., Miladi, K., Badri, W., Sala, M., Ait Addi, E. H., Casabianca, H., El Mousadik, A., Hartman, D., Jilale, A., Reunad, F. N. R., & Elaissari, A. (2015). Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics, 483, 220–243. https://doi.org/10.1016/j.ijpharm.2014.12.069.

Emamifar, A., & Mohammadizadeh, M. Preparation and Application of LDPE/ZnO Nanocomposites for Extending Shelf Life of Fresh Strawberries. Food Technology and Biotechnology, 53, 488–495. https://doi: 10.17113/ftb.53.04.15.3817

Embrapa, Empresa Brasileira de Pesquisa Agropecuária. (2018). Visão 2030: o futuro da agricultura brasileira – Brasília, D: Embrapa.

Esmailzadeh, H., Sangpour, P., Shahraz, F., Hejazi, J., & Khaksar, R. (2016). Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes. Materials Science and Engineering C. 58, 1058-1063. https://doi.org/10.1016/j.msec.2015.09.078.

Espitia, P. J. P., Soares, N. F. F., Coimbra, J. S. R., Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and bioprocess technology, 5 (5), 1447–1464.

Espitia, P. J. P., Soares, N. F. F., Teófilo, R. F., Vitor, D. M., Coimbra, J. S. R., Andrade, N. Souza, F. B., Sinisterra, R. D., & Medeiros, E. A. A. (2013). Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms. Journal of Nanoparticle Research, 15, 1324-1340.

European Commission. (2012). Second Regulatory Review on Nanomaterials. Communication from the commission to the european parliament, the council and the european economic and social committee, p. 1-15. http://ec.europa.eu/research/industrial_technologies/pdf/policy/communication-from-the-commission-second-regulatory-review-on-nanomaterials_en.pdf.

FDA (2014). Part 182 - Substances generally recognized as safe. Food and drug administration, Washington DC, USA. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.8991.

Hu Y., & Chen H. J. (2008). Preparation and characterization of nanocrystalline ZnO particles from a hydrothermal process. Journal of Nanoparticle Research, 10, 401-407. http://dx. doi:10.1007/s11051-007-9264-0

Internacional Organization for Standardization. (2007). ISO 22196 - Plastics — Measurement of antibacterial activity on plastics surfaces. USA.

Internacional Organization for Standardization. (2013). ISO 4833 - Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of microorganisms. USA.

Internacional Organization for Standardization. (2013). ISO 7218 - Microbiology of food and animal feeding stuffs –general requiriments and guidance for microbiological examinations. USA.

Jalal, R., Goharshadi, E. K., Abareshi, M., Moosavi, M., Yousefi, A., & Nancarrow, P. (2010). ZnO nanofluids: green synthesis, characterization and antibacterial activity. Materials Chemistry and Physics, 121 (1-2), 198-201. https://doi.org/10.1016/j.matchemphys.2010.01.020.

Janaki, A. C., Sailatha, E., & Gunasekaran, S. (2015). Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochimica Acta Part A: Spectroscopy Molecular and Biomolecular, 5, 17-22. http://dx. doi.org/10.1016/j.saa.2015.02.041.

JIS Z 2801:2010. Antibacterial products - Test for antibacterial activity and efficacy.

Kasemets, K., Ivask, A., Dubourguier, H. C., & Kahru, A. (2009). Toxicity of nanoparticles ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicology in Vitro, 23 (6), 1116–1122. doi: 10.1016/j.tiv.2009.05.015.

Khezerlou, A., Sani, M. A., Lalabadi, M. A., & Ehsani, A. (2018). Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viroses. Microbial Pathogenesis, 123, 505–526. doi: 10.1016/j.micpath.2018.08.008.

Khodja, S., Touam, T., Chelouche, A., Boudjouan, F., Djouadi, D., Hadjoub, Z., Fischer, A., & Boudrioua, A. (2014). Effects of stabilizer ratio on structural, morphological, optical and waveguide properties of ZnO nano-structured thin films by a sol–gel process. Superlattices and microstructures, 75, 485–495. http://dx. doi.org/10.1016/j.spmi.2014.08.010.

Kirschner, M. R. C., Rippel, T., Ternus, R. Z. Duarte, G. W., Riella, H. G., Dal Magro, J., Mello, J. M. M., Silva, L. L., & Fiori, M. A. (2017). Antibacterial polyamide obtained by the incorporation of glass microparticles doped with ionic zinc and by zinc oxide nanoparticle: Evaluation with Salmonella typhimurium and Staphylococcus aureus. Journal of applied polymer science, 134 (26), 1-11. https://doi.org/10.1002/app.45005.

Maciel, M. J., Machado, G., & Avancini, C. A. M. (2019). Investigação da resistência a antibióticos e a desinfetantes de Salmonella spp. isoladas em produtos e matéria-prima de origem animal (suínos e aves). Revista Brasileira de Saúde e Produção Animal, 20, 1-13.

Mirza, E. H., Ibrahim, W. M. A. B. W., Murphy, B. P., & Djordjevic, I. (2015) Polyoctanediol citrate-zinc oxide nano-composite multifunctional tissue engineering scaffolds with anti-bacterial properties. Digest Journal of Nanomaterials and Biostructures, 10, 415-428.

Moezzi, A., Mcdonagh, A. M., & Cortie, M. B. (2012). Zinc oxide particles: Synthesis, properties and applications. Chemical Engineering Journal, 185-186, 1-22. http://dx. doi.org/10.1016/j.cej.2012.01.076.

Muñoz-Bonilla, A., & Fernández-García, M. (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science, 37, 281–339. https://doi.org/10.1016/j.progpolymsci.2011.08.005.

Nafchi, A. M., Alias, A. K., Mahmud, S., & Robal, M. (2012). Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. Journal of Food Engineering, 113 (4), 511–519. http://dx. doi.org/10.1016/j.jfoodeng.2012.07.017.

OECD/FAO. (2016). OECD-FAO Agricultural Outlook 2016-2025. https://doi.org/10.1787/agr_outlook-2017-en.

Oliveira, A. F., Frazzon, P.G, Brandelli, A., & Tondo, E. C. (2007). Use of PCR-ribotyping, RAPD, and antimicrobial resistance for typing of Salmonella enteritidis involved in food-borne outbreaks in Southern Brazil. Journal of Infection in Developing Countries, 1 (2), 170-176.

Pasquet, J., Chevalier, Y., Couval, E., Bouvier, D., Noizet, G., Morlière, C., & Bolzingerb, M. (2014). Antimicrobial activity of zinc oxide particles on five micro-organisms of the Challenge Tests related to their physicochemical properties. International Journal of Pharmaceutics, 460 (1-2), 92– 100. http://dx. Doi.org/ 10.1016/j.ijpharm.2013.10.031.

Pereira A. S., Shitsuka, D. M., PARREIRA, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.

Perez, F. S., Bertagnolli, S. M. M, Alves, M. P., & Penna, N. G. (2012). Nanotecnologia: aplicações na área de alimentos. Disciplinarum Scientia. Ciências da Saúde, 13 (1), 1-14.

Petchwattana A. N., Covavisaruch, B. C. S., Wibooranawong, C. S., & Naknaen, D. P. (2016). Antimicrobial food packaging prepared from poly (butylene succinate) and zinc oxide. Measurement, 93, 442–448. https://doi.org/10.1016/j.measurement.2016.07.048.

Piletti, R., Zanetti, M., Jung, G., Mello, J. M. M., Dalcanton, F., Soares, C., Riella, H. G., & Fiori, M. A. (2019). Microencapsulation of garlic oil by β‑cyclodextrin as a thermal protection method for antibacterial action. Materials Science and Engineering C: Materials for Biological Applications, 1 (94), 139-149. doi: 10.1016/j.msec.2018.09.037.

Porto, R. C. T., Uchôa, P. Z., Peschel, L. T., Justi, B., Koslowski, L. A. D., & Nogueira, A. L. (2017). Nanopartículas de óxido de zinco sintetizadas pelo método poliol: caracterização e avaliação da atividade antibacteriana. Matéria, 22 (1), 1-8. https://doi.org/10.1590/S1517-707620170005.0248.

Radziejewska, R. C., Stuper, K., & Szablewski, T. (2013). Microflora and mycotoxin contamination in poultry feed mixtures from western Poland. Annals of Agricultural and Environmental Medicine, 20 (1), 30-35.

Rana, S. B., & Singh, R. P. P. (2016). Investigation of structural, optical, magnetic properties and antibacterial activity of Ni-doped zinc oxide nanoparticles. Journal of Materials Science: Materials in Electronics, 27 (9), 9346–9355. http://dx.doi.org/10.1007/s10854-016-4975-6.

Rossi, M., Cubadda, F., Dini, L., & Passeri, D. (2014). Scientific basis of nanotechnology, implications for the food sector and future trends. Trends in Food Science and Technology, 40, 127–148. http://dx. doi.org/10.1016/j.tifs.2014.09.004.

Sahin, E., Musevi, S. J., & Aslani, A. (2017). Antibacterial activity against Escherichia coli and characterization of ZnO and ZnO–Al2O3 mixed oxide nanoparticles. Arabian Journal of Chemistry, 10 (1), 230–235. . http://dx. doi.org/10.1016/j.arabjc.2012.07.027.

Sekhon, B. S. (2014). Nanotechnology in agri-food production: an overview. Nanotechnology, Science and Applications, 7, 31-53. http://dx.doi.org/ 10.2147/NSA.S39406.

Sharma, V., Singh, P., Pandey, A. K., & Dhawan, A. (2012). Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutation Research, 745 (1-2), 84-91. http://dx.doi.org/10.1016/j.mrgentox.2011.12.009.

Shoja, M., Shameli, K., Ahmad, M. B., & Kalantari, K. (2015). Preparation, characterization and antibacterial properties of polycaprolactone/zno microcomposites. Digest Journal of Nanomaterials and Biostructures, 10 (1), 169-178.

Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7 (3), 219-242. https://doi.org/10.1007/s40820-015-0040-x.

Souza Santana, E., Mendes, F. R., Barnabé, A. C. de S., Oliveira, F. H. de, & Andrade, M. A. (2011). Uso de produtos alternativos aos antimicrobianos na avicultura. Enciclopédia Biosfera, Centro Científico Conhecer, 7 (13), 985- 1009.

Strockbine, N. A., Bopp, C. A., Fields, P. I., Kaper, J. B., & Nataro, J. P. (2015). Escherichia, Shigella, and Salmonella. In: Jorgensen JH, Pfaller MA (EE.). Manual of clinical microbiology. 11° ed. Washington: ASM Press, p. 685-713.

Sung, S. Y., Sin, L. T., Tee, T. T., Bee, S. T., Rahmat, A. R., Rahman, W. A. W. A., Tan, A. C., & Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33, 110-123. https://doi.org/10.1016/j.tifs.2013.08.001.

Thaya, R., Malaikozhundan, B., Vijayakumar, S., Sivakamavalli, J., Jeyasekar, R., Shanthi, S., Vaseeharan, B., Ramasamy, P., & Sonawane, A. (2016). Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages. Microbial Pathogenesis, 100, 124-132. doi: 10.1016/j.micpath.2016.09.010.

Tozzo, K., Américo, F.G., Neto, K. M., Spercoski, M. R., Soares, V. M., & Bersot, L. S. (2018). Migration of Salmonella serotypes Heidelberg and Enteritidis in previously frozen chicken breast meat. Food Microbiology, 69, 204-211. http://dx.doi: 10.1016/j.fm.2017.07.021.

Webber, B., Borges, K. A., Furian, T. Q., Rizzo, N. N., Tondo, E. C., Santos, L. R. dos., Rodrigues, L. B., & Nascimento, V. P. do. (2019). Detection of virulence genes in Salmonella Heidelberg isolated from chicken carcasses. Revista do Instituto de Medicina Tropical de São Paulo, 61, 1-7. . http://dx.doi.org/10.1590/s1678-9946201961036.

Xiang, Y., Li, J., Liu, X., Cui, Z., Yang, X., Yeung, K. W. K., & Shuilin, H. P. (2017). Construction of poly (lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility. Materials Science and Engineering, 79, 629-637. doi: 10.1016/j.msec.2017.05.115.

Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appliedand environmental microbiology, 77 (7), 2325–2331. http://dx. doi.org/10.1128/AEM.02149-10.

Yamamoto, O. (2001). Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials, 3, 643–646. http://dx. doi.org/10.1016/S1466-6049(01)00197-0.

Youssef, A. M., & El-Sayed, S. M. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydrate Polymers, 193, 19-27. DOI: 10.1016/j.carbpol.2018.03.088.

Zanetti, M., Mello, J. M. M., Dalcanton, F., Ternus, R. Z., Riella, H. G., Araujo, P. H. H., & Fiori, M. A. (2015). Microbiological characterization of pure geraniol and comparison with bactericidal activity of the cinnamic acid in Gram-positive and Gram-negative bacteria. Journal of Microbial & Biochemical Technology, 7, 186-193. DOI: 10.4172/1948-5948.1000203.

Published

28/06/2021

How to Cite

SILVA, R. da .; BARETTA, A. M. .; SILVA, L. L. da .; TERNUS, R. Z. .; COLPANI, G. L. .; FIORI, M. A. .; DALCANTON, F.; ZANETTI, M.; MELLO, J. M. M. de. Evaluation of the antimicrobial activity of poultry feed additives with zinc oxide nanoparticles. Research, Society and Development, [S. l.], v. 10, n. 7, p. e44610716830, 2021. DOI: 10.33448/rsd-v10i7.16830. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16830. Acesso em: 23 apr. 2024.

Issue

Section

Exact and Earth Sciences