Pu-erh tea: Fermentative process as a potentialized of sensory aspects and bioactive profile – a review
DOI:
https://doi.org/10.33448/rsd-v10i8.16999Keywords:
Bioactive profile; Camellia sinensis; Fermentative process; Health; Sensory aspects.Abstract
Pu-erh is a fermented Chinese tea with characteristics of mild, woody flavor and dark red color. The preparation of the tea starts from leaves of Camellia sinensis in natura that undergo a drying in the sun. Its classification is given in two categories: a raw tea similar to green tea and a matured tea that is fermented. Matured tea has a higher market value due to the processes involved in manufacturing, especially in terms of aging. Pu-erh has numerous benefits for human health, which are closely related to the bioactive profile of the main chemical components of tea, being polyphenols, theabrownins, flavonols, polysaccharides, amino acids and alkaloids. The increasing introduction of Pu-erh tea in the diet of consumers results in the need to explore information associated with consumption through analysis of the available literature, addressing current scientific evidence. Therefore, the present review sought to elucidate the fermentative process of Pu-erh tea production, its chemical composition, its sensory aspects and health benefits.
References
Apeh, D. O., Mark, O., Onoja, V. O., Awotunde, M., Ojo, T., Christopher, P. & Makun, H. A. (2021). Hydrogen cyanide and mycotoxins: Their incidence and dietary exposure from cassava products in Anyigba, Nigeria. Food Control, 121. 107663. 10.1016/j.foodcont.2020.107663
Armstrong, L., do Carmo, M. A. V., Wu, Y., Esmerino, L. A., Azevedo, L., Zhang, L. & Granato, D.. (2020). Optimizing the extraction of bioactive compounds from pu-erh tea (Camellia sinensis var. assamica) and evaluation of antioxidant, cytotoxic, antimicrobial, antihemolytic, and inhibition of α-amylase and α-glucosidase activities. Food Res. Int., 137, 109430. 10.1016/j.foodres.2020.109430
Bogdanova, E., Pugajeva, I., Reinholds I. & Bartkevics, V. (2020). Two-dimensional liquid chromatography - high resolution mass spectrometry method for simultaneous monitoring of 70 regulated and emerging mycotoxins in Pu-erh tea. J. Chromatogr. A., 1622, 461145. 10.1016/j.chroma.2020.461145
Borràs, E., Ferré, J., Boqué, R., Mestres, M., Aceña, L. & Busto, O. (2015). Data fusion methodologies for food and beverage authentication and quality assessment – A review. Anal. Chim. Acta., 891, 1-14. 10.1016/j.aca.2015.04.042
Cao, S. Y., Li, B. Y., Gan, R.Y., Mao, Q. Q., Wang, Y. F., Shang, A., Meng, J. M., Xu, X. Y., Wei, X. L. & Li, H. B. (2020). The In Vivo Antioxidant and Hepatoprotective Actions of Selected Chinese Teas. Foods, 9, 262. 10.3390/foods9030262
Cao, X., Liu, M., Hu, Y., Xue, Q., Yao, F., Sun, J., Sun L. & Liu. Y. (2021). Systemic characteristics of biomarkers and differential metabolites of raw and ripened pu-erh teas by chemical methods combined with a UPLC-QQQ-MS-based metabolomic approach. LWT – Food Sci. Technol., 136, 110316. 10.1016/j.lwt.2020.110316
Choi, S. H., Kim, I. D., Dhungana S. K. & Kim, D. G. (2018). Comparison of Quality Characteristic and Antioxidant Potential of Cultivated Pu-erh and Gushu Pu-erh Tea Extracts at Two Temperatures. J. Pure Appl. Microbiol., 12, 1155-1161. 10.22207/JPAM.12.3.14
Degirmencioglu, N., Yildiz, E., Sahan, Y., Güldas, M. & Gürbüz, O. (2020). Impact of tea leaves types on antioxidant properties and bioaccessibility of kombucha. J. Food Sci. Technol., 10.1007/s13197-020-04741-7
Di Rosa, A. R., Leone, F., Cheli, F. & Chiofalo, V. (2017). Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment – A review. J. Food Eng., 210, 62-75. 10.1016/j.jfoodeng.2017.04.024
Fan, J. P., Fan, C., Dong, W. M., Gao, B.,Yuan, W. & Gong, J. S. (2013). Free radical scavenging and anti-oxidative activities of an ethanol-soluble pigment extract prepared from fermented Zijuan Pu-erh tea. Food Chem. Toxicol., 59, 527-533. 10.1016/j.fct.2013.06.047
Feng, Z,. Li, Y., Wang, Y., Zhang, L., Wan, X. & Yang, X. (2019). Tea aroma formation from six model manufacturing processes. Food Chem., 285, 347-354. 10.1016/j.foodchem.2019.01.174
Ferreira, C. D., Lang, G. H., Lindemann, I. S., Timm, N. S., Hoffmann, J. F., Ziegler, V. & de Oliveira, M. (2021). Postharvest UV-C irradiation for fungal control and reduction of mycotoxins in brown, black, and red rice during long-term storage. Food Chem., 339, 127810. 10.1016/j.foodchem.2020.127810
Gao, L., Bian, M., Mi, R., Hu, X. & Wu, J. (2016). Quality identification and evaluation of Pu‐erh teas of different grade levels and various ages through sensory evaluation and instrumental analysis. Int. J. Food Sci. Technol., 51, 1338-1348. 10.1111/ijfs.13103
Georgiev, K. D., Ilieva, M. R., Stoeva, S. & Zhelev, I. (2019). Isolation, analysis and in vitro assessment of CYP3A4 inhibition by methylxanthines extracted from Pu-erh and Bancha tea leaves. Sci. Rep., 9, 13941. 10.1038/s41598-019-50468-7
Georgiev, K., Iliev, I. & Jelev, I. (2015). Evaluation of antitumor effect of methylxanthine fraction isolated from Pu-erh tea. World J. Pharm. Res., 4, 2236-2242.
Ge, Y., Bian, X., Sun, B., Zhao, M., Ma, Y.,Tang, Y., Li, N. & Wu, J. L. (2019). Dynamic Profiling of Phenolic Acids during Pu-erh Tea Fermentation Using Derivatization Liquid Chromatography–Mass Spectrometry Approach. J. Agric. Food Chem., 67, 4568–4577. 10.1021/acs.jafc.9b00789
Gong, J. S., Tang, C. & Peng, C. X. (2012). Characterization of the chemical differences between solvent extracts from Pu-erh tea and Dian Hong black tea by CP–Py–GC/MS. J. Anal. Appl. Pyrolysis., 95, 189-197. 10.1016/j.jaap.2012.02.006
Haas, D., Pfeifer, B., Reiterich, C., Partenheimer, R., Reck, B. & Buzina, W. (2013). Identification and quantification of fungi and mycotoxins from Pu-erh tea. Int. J. Food Microbiol., 166, 316-322. 10.1016/j.ijfoodmicro.2013.07.024
Huang, F., Zheng, X., Ma, X., Jiang, R., Zhou, W., Zhou, S., Zhang, Y., Lei, S., Wang, S., Kuang, J., Han, X., Wei, M., You, Y., Li, M., Li, Y., Liang, D., Liu, J., Chen, T.,Yan, C., Wei, R., Rajani, C., Shen, C., Xie, G., Bian, Z., Li, H., Zhao A. & Jia, W. (2019a). Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat. Commun., 10, 4971. 10.1038/s41467-019-12896-x
Huang, Y., Wang T., Fillet, M., Crommen, J. & Jiang, Z. (2019b). Simultaneous determination of amino acids in different teas using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. J. Pharm. Anal., 9, 254-258. 10.1016/j.jpha.2019.05.001
Jankech, T., Maliarová, M. & Martinka, N. (2019). Determination of methylxanthines in tea samples by HPLC method. Nova Biotechnol. Chim., 18, 124-132. 10.2478/nbec-2019-0015
Lee, L. K. & Foo, K. Y. (2013). Recent advances on the beneficial use and health implications of Pu-Erh tea. Food Res. Int., 53, 619-628. 10.1016/j.foodres.2013.02.036
Liu, Z., Xie, H. I., Chen, L. & Huang, J. H. (2018). An Improved Weighted Partial Least Squares Method Coupled with Near Infrared Spectroscopy for Rapid Determination of Multiple Components and Anti-Oxidant Activity of Pu-Erh Tea. Molecules, 23, 1058. 10.3390/molecules23051058
Li, Z., Feng, C., Luo, X., Yao, H., Zhang, D. & Zhand, T. (2018). Revealing the influence of microbiota on the quality of Pu-erh tea during fermentation process by shotgun metagenomic and metabolomic analysis. Food Microbiol., 76, 405-415. 10.1016/j.fm.2018.07.001
Long, P., Wen, M., Granato, D., Zhou, J., Wu, Y., Hou, Y. & Zhang, L. (2020). Untargeted and targeted metabolomics reveal the chemical characteristic of pu-erh tea (Camellia assamica) during pile-fermentation. Food Chem., 311, 125895. 10.1016/j.foodchem.2019.125895
Lv, H. P., Zhang, Y. J., Lin, Z. & Liang, Y. R. (2013a). Processing and chemical constituents of Pu-erh tea: A review. Food Res. Int., 53, 608-618. 10.1016/j.foodres.2013.02.043
Lv, H. P., Lin, Z., Tan, J. F. & Guo, L. (2013b). Contents of fluoride, lead, copper, chromium, arsenic and cadmium in Chinese Pu-erh tea. Food Res. Int., 53, 938-944. 10.1016/j.foodres.2012.06.014
Marin, S., Ramos, A. J., Cano-sancho, G. & Sanchis, V. (2013). Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem Toxicol., 60, 218-237. 10.1016/j.fct.2013.07.047
Ma, Y., Ling, T. J., Su, X. Q., Jiang, B.. Nian, B., Chen, L. J., Liu, M. I., Zhang, Z. Y., Wang, D. P., Mu, Y. Y., Jiao, W. W., Liu, Q. T., Pan, Y. H. & Zhao, M. (2021). Integrated proteomics and metabolomics analysis of tea leaves fermented by Aspergillus niger, Aspergillus tamarii and Aspergillus fumigatus. Food Chem., 334, 127560. 10.1016/j.foodchem.2020.127560
Pakshir, K., Mirshekari, Z., Nouraei, H., Zareshahrabadi, Z., Zomorodian, K., Khodadadi, H. & Hadaegh, A. (2020). Mycotoxins Detection and Fungal Contamination in Black and Green Tea by HPLC-Based Method. J. Toxicol., 7 p. 10.1155/2020/2456210
Pang, X., Yu, W., Cao, C., Yuan X., Qiu, J., Kong, F. & Wu, J. (2019). Comparison of Potent Odorants in Raw and Ripened Pu-Erh Tea Infusions Based on Odor Activity Value Calculation and Multivariate Analysis: Understanding the Role of Pile Fermentation. J. Agric. Food Chem., 67, 13139–13149. 10.1021/acs.jafc.9b05321
Roda, G., Marinello, C., Grassi, A., Picozzi, C., Aldini, G., Carini, M. & Regazzoni, L. (2019). Ripe and Raw Pu-Erh Tea: LC-MS Profiling, Antioxidant Capacity and Enzyme Inhibition Activities of Aqueous and Hydro-Alcoholic Extracts. Molecules, 24, 473. 10.3390/molecules24030473
Sedova, I., Kiseleva, M. & Tutelyan, V. (2018). Mycotoxins in Tea: Occurrence, Methods of Determination and Risk Evaluation. Toxins, 10, 444. 10.3390/toxins10110444
Shao, L., Wang, G., Guo, M.,Yang, L., Jiang, D., Li, R. & Zhu, J. (2020). Determination of 9,10-anthraquinone in tea consumed in Shandong Province of China. Chem. Pap., 74, 4453-4460. 10.1007/s11696-020-01254-7
Vuong, Q. V., Golding, J. B., Nguyen, M. & Roach, P. D.(2010). Extraction and isolation of catechins from tea. J. Sep. Sci., 33, 3415-3428.
Wang, C., He, Z., Zhang, C., Du, L., Xiao, D. & Xu, Y. (2020). Sensory and instrumental analysis-guided exploration of odor-active compounds recovery with oil during the water-boiling extraction of Pu-erh tea. Food Res. Int., 134, 109243. 10.1016/j.foodres.2020.109243
Wu, E., Zhang, T., Tan, C., Peng, C., Chisti, Y., Wang, Q. & Gong, J. (2020). Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats. Eur. J. Nutr., 59, 1937-1950. 10.1007/s00394-019-02044-y
Wu, S. C., Yen, G. C., Wang, B. S., Chiu, C. K., Yen, W. J., Chang, L. W. & Duh, P. D. (2007). Antimutagenic and antimicrobial activities of pu-erh tea. LWT – Food Sci. Technol., 40, 506-512 10.1016/j.lwt.2005.11.008.
Xia, Y., Tan, D., Akbary, R., Kong, J., Seviour, R. & Kong, Y. (2019). Aqueous raw and ripe Pu-erh tea extracts alleviate obesity and alter cecal microbiota composition and function in diet-induced obese rats. Appl. Microbiol. Biotechnol., 103, 1823-1835. 10.1007/s00253-018-09581-2
Xie, G., Ye, M., Wang, Y., Ni, Y., Su, M., Huang, H., Qiu, M., Zhao, A., Zheng, X., Chen, T. & Jia, W. (2009). Characterization of Pu-erh Tea Using Chemical and Metabolic Profiling Approaches. J. Agric. Food Chem., 57, 3046-3054. 10.1021/jf804000y
Xue, J., Yang, L., Yang, Y., Yan, J., Ye, Y., Hu, C. & Meng, Y. (2020). Contrasting microbiomes of raw and ripened Pu-erh tea associated with distinct chemical profiles. LWT – Food Sci. Technol., 124, 109147. 10.1016/j.lwt.2020.109147
Xu, J., Wang, M., Zhao, J., Wang,Y. H., Tang, Q. & Khan, I. A. (2018). Yellow tea (Camellia sinensis L.), a promising Chinese tea: Processing, chemical constituents and health benefits. Food Res. Int., 107, 567-577. 10.1016/j.foodres.2018.01.063
Xu, S., Wang, J. J., Wei, Y., Deng, W. W., Wan,X., Bao, G. H., Xie, Z., Ling, T. J. & Ning, J. (2019). Metabolomics Based on UHPLC-Orbitrap-MS and Global Natural Product Social Molecular Networking Reveals Effects of Time Scale and Environment of Storage on the Metabolites and Taste Quality of Raw Pu-erh Tea. J. Agric. Food Chem., 67, 12084–12093. 10.1021/acs.jafc.9b05314
Yang, C.S., Wang, H., Li, G. X.,. Yang, Z., Guan, F. & Jin, H. (2011). Cancer prevention by tea: Evidence from laboratory studies. Pharmacol. Res., 64, 113-122. 10.1016/j.phrs.2011.03.001
Yang, Z., Miao, N., Zhang, X., Li, Q., Wang, Z., Li, C., Sun. X. & Lan, Y. (2021). Employment of an electronic tongue combined with deep learning and transfer learning for discriminating
the storage time of Pu-erh tea. Food Control, 121, 107608. 10.1016/j.foodcont.2020.107608
Yi, T., Zhu, L., Peng, W. L., He, X. C., Chen, H. L., Li, J.,. Yu, T., Lian, Z. T., Zhao, Z. Z. & Chen, H. B. (2015). Comparison of ten major constituents in seven types of processed tea using HPLC-DAD-MS followed by principal component and hierarchical cluster analysis. LWT - Food Sci. Technol., 62, 194-201. 10.1016/j.lwt.2015.01.003
Zhang, T., Ni, H., Qiu, X. J., Li, T., Zhang, L. Z., Li, L. J., Jiang, Z. D., Li, Q. B., Chen. F. & Zheng, F. P. (2019). Suppressive Interaction Approach for Masking Stale Note of Instant Ripened Pu-Erh Tea Products. Molecules, 24, 4473. 10.3390/molecules24244473
Zhao, M., Su, X. Q., Nian, B., Chen, L. J., Zhang, D. L., Duan, S. M., Wang, L. Y., Shi, X. Y., Jiang, B., Jiang, W. W., Lv, C. Y.,Wang, D. P., Shi, Y., Xiao, Y., Wu, J. L., Pa, Y. H.; & Ma, Y. (2019). Integrated Meta-omics Approaches To Understand the Microbiome of Spontaneous Fermentation of Traditional Chinese Pu-erh Tea. Am. Soc. Microbiol., 4, e00680-19. 10.1128/mSystems.00680-19
Zhao, Z.J., Tong, H. R., Zhou, Wang E. X. & Liu, Q. J. (2010). Fungal colonization of Pu-erh tea in Yunnan. J. Food Saf., 30, 769-784. 10.1111/j.1745-4565.2010.00240.x
Zheng, Y., Zeng, X., Chen, T., Peng, W. & Su, W.. (2020). Chemical Profile, Antioxidative, and Gut Microbiota Modulatory Properties of Ganpu Tea: A Derivative of Pu-erh Tea. Nutrients, 12, 224. 10.3390/nu12010224
Zhou, B., Ma, C., Ren, X., Xia, T., Li, X. & Wu, Y. (2019). Production of theophylline via aerobic fermentation of pu-erh tea using tea-derived fungi. BMC Microbiol, 19, 261. 10.1186/s12866-019-1640-2
Zhou, B., Ma, C., Wu, T., Xu, C., Wang, J. & Xia, T. (2020a). Classification of raw Pu-erh teas with different storage time based on characteristic compounds and effect of storage environment. LWT – Food Sci. Technol., 133, 109914. 10.1016/j.lwt.2020.109914
Zhou, B., Ma, C., Ren, X., Xia, T., Zheng, C. & Liu, X. (2020b). Correlation analysis between filamentous fungi and chemical compositions in a pu‐erh type tea after a long‐term storage. Food Sci. Nutr., 8, 2501-2511. 10.1002/fsn3.1543
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Rafaela Julyana Barboza Devos; Cristina de Araújo Barth; Aline Dettmer; Telma Elita Bertolin; Luciane Maria Colla
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.