Biomodulatory effect of low intensity laser (830 nm.) in neural model 9L/lacZ

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.17025

Keywords:

Cell viability; Comet assay; DNA damage; Electrophoresis; Glial cells; Low intensity laser.

Abstract

Currently, research is advancing with low-intensity laser (LIL) in cells of the central nervous system, with the aim of  evaluating the benefits of this therapy in neurological disorders such as Alzheimer's, stroke, ischemia, epilepsy, among others. The aim of this study was to verify the biomodulatory and biostimulatory effects of LIL in neural cell culture. Diode laser at wavelength λ = 830 nm, power 40 mW, in continuous mode, was applied on the 9L/lacZ cell line with energy densities of 0.5 to 3 J/cm2. The analysis was performed 24 hours after irradiation, the results of cell viability showed a difference between the control and irradiated groups. As for the occurrence of apoptosis, no significant manifestation was observed between the control group compared to the irradiated group (P = 0.9956); there

was a significant difference between apoptosis and death by necrosis between the control and treated groups (P<0.001). In the comet assay no statistically significant differences were observed. Regarding the objective of evaluating whether LIL promotes early activation of apoptosis or proliferation of 9L/lacZ cells at different energy densities of the infrared diode laser, we observed an increase in the number of neural cells, highlighting the action of biomodulation. Furthermore, LIL did not promote the activation of programmed cell death - apoptosis and did not show any indication of DNA damage by the comet assay. The results of this study are indicative that the laser in the near infrared has a positive interaction with neuronal cells.

References

Alzheimer’s Disease International. (2018). World Alzheimer Report 2018: The state of the art of dementia research: New frontiers.

Anders, J., Moges, H., Wu, X., Ilev, I., Waynant, R., & Longo, L. (2010, May). The combination of light and stem cell therapies: a novel approach in regenerative medicine. In AIP Conference Proceedings. 1226, 3-10. American Institute of Physics.

Barboza, C. A. G., Ginani, F., Soares, D. M., Henriques, Á. C. G., & Freitas, R. D. A. (2014). Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells. Einstein, 12(1), 75-81.

Barolet, D., Christiaens, F., & Hamblin, M. R. (2016). Infrared and skin: Friend or foe. Journal of Photochemistry and Photobiology B: Biology, 155, 78-85.

Barrett, D. W., & Gonzalez-Lima, F. (2013). Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience, 230, 13-23.

Carnevalli, C. M., Soares, C. P., Zângaro, R. A., Pinheiro, A. L., & Silva, N. S. (2003). Laser light prevents apoptosis on Cho K-1 cell line. Journal of clinical laser medicine & surgery, 21(4), 193-196.

Carvalho, I. C. S., Dutra, T. P., De Andrade, D. P., Balducci, I., Pacheco‐Soares, C., & Rocha, R. F. D. (2016). High doses of alcohol during pregnancy cause DNA damages in osteoblasts of newborns rats. Birth Defects Research Part A: Clinical and Molecular Teratology, 106(2), 122-132.

Evans, D. H., & Abrahamse, H. (2009). A review of laboratory-based methods to investigate second messengers in low-level laser therapy (LLLT). Medical Laser Application, 24(3), 201-215.

Gao, X., & Xing, D. (2009). Molecular mechanisms of cell proliferation induced by low power laser irradiation. Journal of biomedical science, 16(1), 1-16.

Giuliani, A., Lorenzini, L., Gallamini, M., Massella, A., Giardino, L., & Calzà, L. (2009). Low infra red laser light irradiation on cultured neural cells: effects on mitochondria and cell viability after oxidative stress. BMC complementary and alternative medicine, 9(1), 1-10.

Gonzalez-Lima, F., Barksdale, B. R., & Rojas, J. C. (2014). Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochemical pharmacology, 88(4), 584-593.

Hamblin, M. R. (2016). Shining light on the head: photobiomodulation for brain disorders. BBA clinical, 6, 113-124.

Hashmi, J. T., Huang, Y. Y., Osmani, B. Z., Sharma, S. K., Naeser, M. A., & Hamblin, M. R. (2010). Role of low‐level laser therapy in neurorehabilitation. Pm&r, 2, S292-S305.

International Organization for Standardization. (2014). ISO 10993-3: 2014. Tests for genotoxicity, carcinogenicity and reproductive toxicity. Biological evaluation of medical devices.

Karu, T. (1999). Primary and secondary mechanisms of action of visible to near-IR radiation on cells. Journal of Photochemistry and photobiology B: Biology, 49(1), 1-17.

Karu, T., & Pyatibrat, L. (2011). Gene expression under laser and light‐emitting diodes radiation for modulation of cell adhesion: Possible applications for biotechnology. IUBMB life, 63(9), 747-753.

Karu, T., Pyatibrat, L., & Kalendo, G. (1995). Irradiation with He Ne laser increases ATP level in cells cultivated in vitro. Journal of Photochemistry and photobiology B: Biology, 27(3), 219-223.

Kim, W. S., & Calderhead, R. G. (2011). Is light-emitting diode phototherapy (LED-LLLT) really effective? Laser therapy, 20(3), 205-215.

Kong, X., Mohanty, S. K., Stephens, J., Heale, J. T., Gomez-Godinez, V., Shi, L. Z., ... & Berns, M. W. (2009). Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells. Nucleic acids research, 37(9), e68-e68.

Liebert, A. D., Bicknell, B. T., & Adams, R. D. (2014). Protein conformational modulation by photons: A mechanism for laser treatment effects. Medical Hypotheses, 82(3), 275-281.

Lovell, D. P., & Omori, T. (2008). Statistical issues in the use of the comet assay. Mutagenesis, 23(3), 171-182.

Lubart, R., Lavi, R., Friedmann, H., & Rochkind, S. (2006). Photochemistry and photobiology of light absorption by living cells. Photomedicine and Laser Therapy, 24(2), 179-185.

Mochizuki-Oda, N., Kataoka, Y., Cui, Y., Yamada, H., Heya, M., & Awazu, K. (2002). Effects of near-infra-red laser irradiation on adenosine triphosphate and adenosine diphosphate contents of rat brain tissue. Neuroscience letters, 323(3), 207-210.

Møller, P. (2018). The comet assay: ready for 30 more years. Mutagenesis, 33(1), 1-7.

Moreira, M. S., Velasco, I. T., Ferreira, L. S., Ariga, S. K., Abatepaulo, F., Grinberg, L. T., & Marques, M. M. (2011). Effect of laser phototherapy on wound healing following cerebral ischemia by cryogenic injury. Journal of Photochemistry and Photobiology B: Biology, 105(3), 207-215.

Murayama, H., Sadakane, K., Yamanoha, B., & Kogure, S. (2012). Low-power 808-nm laser irradiation inhibits cell proliferation of a human-derived glioblastoma cell line in vitro. Lasers in medical science, 27(1), 87-93.

Oron, U., Ilic, S., De Taboada, L., & Streeter, J. (2007). Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomedicine and laser surgery, 25(3), 180-182.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM.

Reynolds, P., Botchway, S. W., Parker, A. W., & O’Neill, P. (2013). Spatiotemporal dynamics of DNA repair proteins following laser microbeam induced DNA damage–when is a DSB not a DSB? Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 756(1-2), 14-20.

Rojas, J. C., & Gonzalez-Lima, F. (2013). Neurological and psychological applications of transcranial lasers and LEDs. Biochemical pharmacology, 86(4), 447-457.

Sharma, S. K., Kharkwal, G. B., Sajo, M., Huang, Y. Y., De Taboada, L., McCarthy, T., & Hamblin, M. R. (2011). Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers in surgery and medicine, 43(8), 851-859.

Shen, C. C., Yang, Y. C., Chiao, M. T., Chan, S. C., & Liu, B. S. (2013). Low-level laser stimulation on adipose-tissue-derived stem cell treatments for focal cerebral ischemia in rats. Evidence-Based Complementary and Alternative Medicine, 2013.

Sommer, A. P., Bieschke, J., Friedrich, R. P., Zhu, D., Wanker, E. E., Fecht, H. J., ... & Hunstein, W. (2012). 670 nm laser light and EGCG complementarily reduce amyloid-β aggregates in human neuroblastoma cells: basis for treatment of Alzheimer's disease?. Photomedicine and laser surgery, 30(1), 54-60.

Tsai, S. R., & Hamblin, M. R. (2017). Biological effects and medical applications of infrared radiation. Journal of photochemistry and photobiology. B, Biology, 170, 197–207.

von Leden, R. E., Cooney, S. J., Ferrara, T. M., Zhao, Y., Dalgard, C. L., Anders, J. J., & Byrnes, K. R. (2013). 808 nm Wavelength Light Induces a Dose‐D ependent Alteration in Microglial Polarization and Resultant Microglial Induced Neurite Growth. Lasers in Surgery and Medicine, 45(4), 253-263.

Wang, L., Hu, L., Grygorczyk, R., Shen, X., & Schwarz, W. (2015). Modulation of extracellular ATP content of mast cells and DRG neurons by irradiation: studies on underlying mechanism of low-level-laser therapy. Mediators of inflammation, 2015.

World Health Organization. (2017). Global action plan on the public health response to dementia 2017–2025.

Wu, J. Y., Wang, Y. H., Wang, G. J., Ho, M. L., Wang, C. Z., Yeh, M. L., & Chen, C. H. (2012). Low-power GaAlAs laser irradiation promotes the proliferation and osteogenic differentiation of stem cells via IGF1 and BMP2. PloS one, 7(9), e44027.

Wu, X., Dmitriev, A. E., Cardoso, M. J., Viers‐Costello, A. G., Borke, R. C., Streeter, J., & Anders, J. J. (2009). 810 nm Wavelength light: an effective therapy for transected or contused rat spinal cord. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 41(1), 36-41.

Yazdani, S. O., Golestaneh, A. F., Shafiee, A., Hafizi, M., Omrani, H. A. G., & Soleimani, M. (2012). Effects of low level laser therapy on proliferation and neurotrophic factor gene expression of human schwann cells in vitro. Journal of Photochemistry and Photobiology B: Biology, 107, 9-13.

Zabeu A. M. C., & Pacheco-Soares C. (2015) Action of LLLT (Low Level Laser Therapy) In Cells Culture 9L/lacZ. Advances in Laserology, Selected Papers of Laser Florence Congress, Medimond Publisher in June 2016 by Editografica Bologna, 2015;73–76.

Downloads

Published

07/07/2021

How to Cite

ZABEU, A. M. C. .; CARVALHO, I. C. S. .; PACHECO-SOARES, C.; SILVA, N. S. da . Biomodulatory effect of low intensity laser (830 nm.) in neural model 9L/lacZ. Research, Society and Development, [S. l.], v. 10, n. 8, p. e11310817025, 2021. DOI: 10.33448/rsd-v10i8.17025. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17025. Acesso em: 15 jan. 2025.

Issue

Section

Health Sciences