Can postbiotics show antiviral effects against Sars-CoV-2?

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.17259

Keywords:

Antiviral activity; COVID-19; New coronavirus; Probiotic.

Abstract

Severe Acute Respiratory Syndrome of Coronavirus-2 (Sars-CoV-2) is the causative agent of the new Coronavirus Disease (COVID-19) responsible for the current pandemic that threatens global health. Although some anti-COVID-19 therapeutic agents are under investigation, there is still no evidence of antiviral action against Sars-CoV-2. Research in the literature describes the success of probiotics in the treatment of viral infections from their byproducts, known as postbiotics, such as exopolysaccharides, hydrogen peroxide, and different bacteriocins. Based on these reports, we describe the main postbiotics that present antiviral actions against different viruses with a view to suggesting their use as possible therapeutic agents for COVID-19. The revised data show promising effects for using postbiotics as efficient vehicles against various types of viruses. However, further investigation of the underlying mechanisms is required for their indication against Sars-CoV-2 and other Sars-CoV infections.

References

Abdelhamid, A. G., El-masry, S. S., & El-dougdoug, N. (2019). Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining. Epma Journal.; (10): 350-337. https:// 10.1007 / s13167-019-00184-z

Al kassaa. I., Hober, D., Hamze, M., Chihib, N. E., & Drider, D. (2014). Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotic and antimicrobial proteins.; (6): 185-177.

Al Kassaa, I. (2016). New insights on antiviral probiotics: From Research to Applications. Springer.; 126-1.

Amanna, I. J., Raué, H. P., & Slifka, M. K. (2012). Development of a new hydrogen peroxide–based vaccine platform. Nature Medicine.; (18): 979-974. https:// 10.1038 / nm.2763

Anwar, F., Altayb, H. N., Al-Abbasi, F. A., Al-Malki, A. L., Kamal, M. A., & Kumar, V. (2020). Antiviral effects of probiotic metabolites on COVID-19. Journal of Biomolecular Structure and Dynamics.; 39: (5),1-11. https://doi.org/10.1080/07391102.2020.1775123

Aspri, M., Bozoudi, D., Tsaltas, D., Hill, C., & Papademas, P. (2016). Raw donkey milk as a source of Enterococcus diversity: Assessment of their technological properties and safety characteristics. Food Control.; (73): 90-81. https://10.1016/ j. foodcont.2016.05.022

Badel, S., Bernard, T., & Michaud, P. (2011). New perspectives for Lactobacilli exopolysaccharides. Biotechnology Advances.; (29): 66-54. https:// 10.1016 / j. biotechadv.2010.08.011

Barros, C. P., Guimarães, J. T., Esmerino, E. A., & et al. (2020). Paraprobiotics and postbiotics: Concepts and potential applications in dairy products. Current Opinion in Food Science.; (32): 8-1.

Biliavska, L., Pankivska, Y., Povnitsa, O., & Zagorodnya, S. (2019). Antiviral activity of exopolysaccharides produced by lactic acid bacteria of the genera Pediococcus, Leuconostoc and Lactobacillus against human adenovirus type 5. Medicina. 2019; (55): 519. https:// 10.3390 / medicina55090519

Caruso, A. A., Del Prete, A., & Lazzarino, A. I. (2020). Hydrogen peroxide and viral infections: a literature review with research hypothesis definition in relation to the current covid-19 pandemic. Medical Hypotheses.: 109910. https://10.1016/ j. mehy.2020.109910

Cavicchioli, V. Q., Carvalho, O. V., Paiva, J. C., Todorov, S. D., Júnior, A. S., & Nero L. A. (2017). Inhibition of Herpes simplex virus 1 and Poliovirus (PV-1) by bacteriocins from Lactococcus lactis subsp. lactis and Enterococcus durans strains isolated from goat milk. International Journal of Antimicrobial Agents.; (51): 37-33. https:// 10.1016/j.ijantimicag.2017.04.020

Chen, L., Xiong, J., Bao, L., & Shi, Y. (2020). Convalescent plasma as a potential therapy for Covid-19. Lancet infectious dis.; (20): 400-398. https:// 10.1016 / S1473-3099 (20) 30141-9

De Almada, C. N., Almada, C. N., Martínez, R. C. R., & Sant’Ana, A. (2016). Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends in Food Science & Technology.; (58): 114-96. https://doi.org/10.1016/j.tifs.2016.09.011

De Almada, C. N., Almada, C., & Souza, S. A. (2017). Probiotics and prebiotics in animal health and food safety. Springer.: 268-247.

Di Grezia, M., Fransvea, P., Santullo, F., & et al. (2020). Intra-abdominal hypertension as a trigger of “gut failure” is Sars- Cov-2 infection: effect of open abdomen (OA) and negative pressure therapy (NPT) on respiratory and gastrointestinal (GI) function. Medical Hypotheses.; (144): 109954. https:// 10.1016 / j.mehy.2020.109954

Drider, D., Bendali, F., Naghmouchi, K., & Chikindas, M. (2016). Bacteriocins: not only antibacterial agents. Probiotics antimicrobial proteins.; (8): 182-177. https:// 10.1007 / s12602-016-9223-0

Ermolenko, E. L., Desheva, Y. A., Kolobov, A. A., Kotyleva, M. P., Sychev, I. A., & Suvorov, N. A. (2018). Anti–Influenza Activity of Enterocin B In vitro and Protective Effect of Bacteriocinogenic Enterococcal Probiotic Strain on Influenza Infection in Mouse Model. Probiotics and Antimicrobial Proteins.; (11): 712-705. https:// 10.1007 / s12602-018-9457-0

Forman, H. J. (2008). Hydrogen peroxide: the good, the bad, and the ugly. In: Oxidants in Biology. Springer.,1-17.

Freitas, F., Alves, V. D., & Reis, M. A. M. (2011). Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends in Biotechnology.; (29): 398-388. https:// 10.1016 / j. tibtech.2011.03.008

Ibáñez-Cervantes, G., Alcántara, J. C. B, & Cortés, A. S. N. (2020). Disinfection of N95 masks artificially contaminated with SARS-CoV-2 and ESKAPE bacteria using hydrogen peroxide plasma: impact on the reutilization of disposable devices. American Journal of Infection Control.; (9): 1041-1037. https://10.1016/j. ajic.2020.06.216

Jung, Y. J., Lee, Y. T., & Ngo, V. L. (2017). Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection. Scientific reports.; (7): 12-1.

Kampf, G., Todt, D., Pfaender, S., & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection.; (104): 251-246. https://doi.org/10.1016/j.jhin.2020.01.022

Kim, K., Lee, G., & Thanh, H. D. (2018). Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response. Journal of Dairy Science.; (7): 5712-5702. https:// 10.3168 / jds.2017-14151

Klebanoff, S. J., & Coombs, R. W. (1991). Viricidal effect of Lactobacillus acidophilus on human immunodeficiency virus type 1: possible role in heterosexual transmission. The Journal of Experimental Medicine.; (174): 292-289. https://10.1084/ jem.174.1.289Zx

Markowiak, P., & Slizewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients.; (9): 1–30. https:// 10.3390 / nu9091021.

Martín, R., & Langella, P. (2019). Emerging health concepts in the probiotics field: Streamlining the definitions. Frontiers in Microbiology.; (10): 1047. https://doi.org/10.3389/fmicb.2019.01047

Nagai, T., Makino, S., Ikegami, S., Itoh, H., & Yamada, H. (2011). Effects of oral administration of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 and its exopolysaccharides against influenza virus infection in mice. International Immunopharmacology.; (11): 2250-2246. https://10.1016/ j. intimp.2011.09.012

Serkedjieva, J., Danova, S., & Ivanoma, I. (2000). Anti-influenza vírus activity of a bacteriocin produced by Lactobacillus delbrueckii. Applied Biochemistry and Biotechnology.; (88): 299-285.

Sunmola, A. A., Ogbole, O. O., Faleye, T. O., Adetoye, A., & Adeniji, J. Á. (2019). Antiviral potentials of Lactobacillus plantarum, Lactobacillus amylovorus and Enterococcus hirae against selected enterovirus. Folia microbiológica.; (10): 265-257. https:// 10.1007/s12223-018-0648-6

Vallejo, C. B., Lópes, C. C., García, H. S., Córdova, A. F. G., & Mendoza, A. H. (2020). Postbiotics and paraprobiotics: A review of current evidence and emerging trends. Advances in Food and Nutrition Research.; (94): 384-1.

Todorov, S. D., Wachsman, M. B., Knoetze, H., Meincken, M., & Dicks, L. M. T. (2005). An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. International Journal of Antimicrobial Agents.; (25): 513-508. https:// 10.1016 / j. ijantimicag.2005.02.005

Todorov, S. D., Wachsman, M., & Tomé, E. (2010). Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiology.; (27): 879-869. https:// 10.1016 / j.fm.2010.05.001

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol.; (39): 84-44. https:// 10.1016 / j. biocel.2006.07.001

Velev, V., Popov, M., Velikov, P., Dinkova, M., Ilieva, V., & et al. (2020). Covid-19 and gastrointestinal injury: a brief systematic review and data from Bulgaria. Le infezioni in medicina.; 41-37.

Vivier, E., Tomasello, E., Baratin, M., Walzer, T., & Ugolini, S. (2008). Functions of natural killer cells. Nature Immunology.; (9): 510-503.

Wachsman, M., Castilla, V., Holgado, A. P. R., Torres, R. A., Sesma, F., & Coto, C. E. (2003). Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Research.; (58): 24-17. https:// 10.1016 / s0166-3542 (02) 00099-2.

World Health Organization. (2021). Questions and answers on coronaviruses (COVID-19).; published online January 09. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-coronaviruses (accessed Sept 8, 2020).

Yang, Y., Song, H., Wang, L. & et al. (2017). Antiviral effects of a probiotic metabolic products against transmissible gastroenteritis coronavirus. J Prob Health.; (3): 6-1. https:// 10.4172/2329-8901.1000184

Downloads

Published

09/07/2021

How to Cite

BRITO, L. P. de .; SILVA JÚNIOR , J. N. da .; BARROS, P. D. S. de; SILVA, E. C. da .; CALAÇA, P. R. de A. .; SOARES, M. T. C. V. .; PORTO, A. L. F. . Can postbiotics show antiviral effects against Sars-CoV-2?. Research, Society and Development, [S. l.], v. 10, n. 8, p. e14610817259, 2021. DOI: 10.33448/rsd-v10i8.17259. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17259. Acesso em: 15 jan. 2025.

Issue

Section

Health Sciences