Podem os pós-bióticos apresentarem efeitos antivirais contra Sars-CoV-2?

Autores

DOI:

https://doi.org/10.33448/rsd-v10i8.17259

Palavras-chave:

Atividade antiviral; COVID-19; Novo coronavírus; Probióticos.

Resumo

A Síndrome Respiratória Aguda Grave do Coronavírus-2 (Sars-CoV-2) é o agente causador da nova Doença do Coronavírus (COVID-19) responsável pela atual pandemia que ameaça a saúde global. Embora alguns agentes terapêuticos anti-COVID-19 estejam sob investigação, ainda não há evidências de ação antiviral contra Sars-CoV-2. Pesquisas na literatura descrevem o sucesso dos probióticos no tratamento das infecções virais de seus subprodutos, conhecidos como pós-bióticos, como exopolissacarídeos, peróxido de hidrogênio e diversas bacteriocinas. Com base nesses relatos, descrevemos os principais pós-bióticos que apresentam ação antiviral contra diferentes vírus, com o objetivo de sugerir seu uso como possíveis agentes terapêuticos para COVID-19. Os dados revisados ​​mostram efeitos promissores para o uso de pós-bióticos como veículos eficientes contra vários tipos de vírus. No entanto, uma investigação mais aprofundada dos mecanismos subjacentes é necessária para sua indicação contra Sars-CoV-2 e outras infecções por Sars-CoV.

Referências

Abdelhamid, A. G., El-masry, S. S., & El-dougdoug, N. (2019). Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining. Epma Journal.; (10): 350-337. https:// 10.1007 / s13167-019-00184-z

Al kassaa. I., Hober, D., Hamze, M., Chihib, N. E., & Drider, D. (2014). Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotic and antimicrobial proteins.; (6): 185-177.

Al Kassaa, I. (2016). New insights on antiviral probiotics: From Research to Applications. Springer.; 126-1.

Amanna, I. J., Raué, H. P., & Slifka, M. K. (2012). Development of a new hydrogen peroxide–based vaccine platform. Nature Medicine.; (18): 979-974. https:// 10.1038 / nm.2763

Anwar, F., Altayb, H. N., Al-Abbasi, F. A., Al-Malki, A. L., Kamal, M. A., & Kumar, V. (2020). Antiviral effects of probiotic metabolites on COVID-19. Journal of Biomolecular Structure and Dynamics.; 39: (5),1-11. https://doi.org/10.1080/07391102.2020.1775123

Aspri, M., Bozoudi, D., Tsaltas, D., Hill, C., & Papademas, P. (2016). Raw donkey milk as a source of Enterococcus diversity: Assessment of their technological properties and safety characteristics. Food Control.; (73): 90-81. https://10.1016/ j. foodcont.2016.05.022

Badel, S., Bernard, T., & Michaud, P. (2011). New perspectives for Lactobacilli exopolysaccharides. Biotechnology Advances.; (29): 66-54. https:// 10.1016 / j. biotechadv.2010.08.011

Barros, C. P., Guimarães, J. T., Esmerino, E. A., & et al. (2020). Paraprobiotics and postbiotics: Concepts and potential applications in dairy products. Current Opinion in Food Science.; (32): 8-1.

Biliavska, L., Pankivska, Y., Povnitsa, O., & Zagorodnya, S. (2019). Antiviral activity of exopolysaccharides produced by lactic acid bacteria of the genera Pediococcus, Leuconostoc and Lactobacillus against human adenovirus type 5. Medicina. 2019; (55): 519. https:// 10.3390 / medicina55090519

Caruso, A. A., Del Prete, A., & Lazzarino, A. I. (2020). Hydrogen peroxide and viral infections: a literature review with research hypothesis definition in relation to the current covid-19 pandemic. Medical Hypotheses.: 109910. https://10.1016/ j. mehy.2020.109910

Cavicchioli, V. Q., Carvalho, O. V., Paiva, J. C., Todorov, S. D., Júnior, A. S., & Nero L. A. (2017). Inhibition of Herpes simplex virus 1 and Poliovirus (PV-1) by bacteriocins from Lactococcus lactis subsp. lactis and Enterococcus durans strains isolated from goat milk. International Journal of Antimicrobial Agents.; (51): 37-33. https:// 10.1016/j.ijantimicag.2017.04.020

Chen, L., Xiong, J., Bao, L., & Shi, Y. (2020). Convalescent plasma as a potential therapy for Covid-19. Lancet infectious dis.; (20): 400-398. https:// 10.1016 / S1473-3099 (20) 30141-9

De Almada, C. N., Almada, C. N., Martínez, R. C. R., & Sant’Ana, A. (2016). Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends in Food Science & Technology.; (58): 114-96. https://doi.org/10.1016/j.tifs.2016.09.011

De Almada, C. N., Almada, C., & Souza, S. A. (2017). Probiotics and prebiotics in animal health and food safety. Springer.: 268-247.

Di Grezia, M., Fransvea, P., Santullo, F., & et al. (2020). Intra-abdominal hypertension as a trigger of “gut failure” is Sars- Cov-2 infection: effect of open abdomen (OA) and negative pressure therapy (NPT) on respiratory and gastrointestinal (GI) function. Medical Hypotheses.; (144): 109954. https:// 10.1016 / j.mehy.2020.109954

Drider, D., Bendali, F., Naghmouchi, K., & Chikindas, M. (2016). Bacteriocins: not only antibacterial agents. Probiotics antimicrobial proteins.; (8): 182-177. https:// 10.1007 / s12602-016-9223-0

Ermolenko, E. L., Desheva, Y. A., Kolobov, A. A., Kotyleva, M. P., Sychev, I. A., & Suvorov, N. A. (2018). Anti–Influenza Activity of Enterocin B In vitro and Protective Effect of Bacteriocinogenic Enterococcal Probiotic Strain on Influenza Infection in Mouse Model. Probiotics and Antimicrobial Proteins.; (11): 712-705. https:// 10.1007 / s12602-018-9457-0

Forman, H. J. (2008). Hydrogen peroxide: the good, the bad, and the ugly. In: Oxidants in Biology. Springer.,1-17.

Freitas, F., Alves, V. D., & Reis, M. A. M. (2011). Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends in Biotechnology.; (29): 398-388. https:// 10.1016 / j. tibtech.2011.03.008

Ibáñez-Cervantes, G., Alcántara, J. C. B, & Cortés, A. S. N. (2020). Disinfection of N95 masks artificially contaminated with SARS-CoV-2 and ESKAPE bacteria using hydrogen peroxide plasma: impact on the reutilization of disposable devices. American Journal of Infection Control.; (9): 1041-1037. https://10.1016/j. ajic.2020.06.216

Jung, Y. J., Lee, Y. T., & Ngo, V. L. (2017). Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection. Scientific reports.; (7): 12-1.

Kampf, G., Todt, D., Pfaender, S., & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection.; (104): 251-246. https://doi.org/10.1016/j.jhin.2020.01.022

Kim, K., Lee, G., & Thanh, H. D. (2018). Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response. Journal of Dairy Science.; (7): 5712-5702. https:// 10.3168 / jds.2017-14151

Klebanoff, S. J., & Coombs, R. W. (1991). Viricidal effect of Lactobacillus acidophilus on human immunodeficiency virus type 1: possible role in heterosexual transmission. The Journal of Experimental Medicine.; (174): 292-289. https://10.1084/ jem.174.1.289Zx

Markowiak, P., & Slizewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients.; (9): 1–30. https:// 10.3390 / nu9091021.

Martín, R., & Langella, P. (2019). Emerging health concepts in the probiotics field: Streamlining the definitions. Frontiers in Microbiology.; (10): 1047. https://doi.org/10.3389/fmicb.2019.01047

Nagai, T., Makino, S., Ikegami, S., Itoh, H., & Yamada, H. (2011). Effects of oral administration of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 and its exopolysaccharides against influenza virus infection in mice. International Immunopharmacology.; (11): 2250-2246. https://10.1016/ j. intimp.2011.09.012

Serkedjieva, J., Danova, S., & Ivanoma, I. (2000). Anti-influenza vírus activity of a bacteriocin produced by Lactobacillus delbrueckii. Applied Biochemistry and Biotechnology.; (88): 299-285.

Sunmola, A. A., Ogbole, O. O., Faleye, T. O., Adetoye, A., & Adeniji, J. Á. (2019). Antiviral potentials of Lactobacillus plantarum, Lactobacillus amylovorus and Enterococcus hirae against selected enterovirus. Folia microbiológica.; (10): 265-257. https:// 10.1007/s12223-018-0648-6

Vallejo, C. B., Lópes, C. C., García, H. S., Córdova, A. F. G., & Mendoza, A. H. (2020). Postbiotics and paraprobiotics: A review of current evidence and emerging trends. Advances in Food and Nutrition Research.; (94): 384-1.

Todorov, S. D., Wachsman, M. B., Knoetze, H., Meincken, M., & Dicks, L. M. T. (2005). An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. International Journal of Antimicrobial Agents.; (25): 513-508. https:// 10.1016 / j. ijantimicag.2005.02.005

Todorov, S. D., Wachsman, M., & Tomé, E. (2010). Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiology.; (27): 879-869. https:// 10.1016 / j.fm.2010.05.001

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol.; (39): 84-44. https:// 10.1016 / j. biocel.2006.07.001

Velev, V., Popov, M., Velikov, P., Dinkova, M., Ilieva, V., & et al. (2020). Covid-19 and gastrointestinal injury: a brief systematic review and data from Bulgaria. Le infezioni in medicina.; 41-37.

Vivier, E., Tomasello, E., Baratin, M., Walzer, T., & Ugolini, S. (2008). Functions of natural killer cells. Nature Immunology.; (9): 510-503.

Wachsman, M., Castilla, V., Holgado, A. P. R., Torres, R. A., Sesma, F., & Coto, C. E. (2003). Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Research.; (58): 24-17. https:// 10.1016 / s0166-3542 (02) 00099-2.

World Health Organization. (2021). Questions and answers on coronaviruses (COVID-19).; published online January 09. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-coronaviruses (accessed Sept 8, 2020).

Yang, Y., Song, H., Wang, L. & et al. (2017). Antiviral effects of a probiotic metabolic products against transmissible gastroenteritis coronavirus. J Prob Health.; (3): 6-1. https:// 10.4172/2329-8901.1000184

Downloads

Publicado

09/07/2021

Como Citar

BRITO, L. P. de .; SILVA JÚNIOR , J. N. da .; BARROS, P. D. S. de; SILVA, E. C. da .; CALAÇA, P. R. de A. .; SOARES, M. T. C. V. .; PORTO, A. L. F. . Podem os pós-bióticos apresentarem efeitos antivirais contra Sars-CoV-2?. Research, Society and Development, [S. l.], v. 10, n. 8, p. e14610817259, 2021. DOI: 10.33448/rsd-v10i8.17259. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17259. Acesso em: 1 jul. 2024.

Edição

Seção

Ciências da Saúde