Nicotiana benthamiana seeds tolerate hyperaccelerations up to 400,000 x g

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.17323

Keywords:

Hypergravity; Ultracentrifugation; Acceleration; g-force; Nicotiana benthamiana.

Abstract

Exposure to hypergravity can alter the viability, morphology, development and behavior of living beings. Thus, the analysis of these factors is essential when considering life on supermassive planets, as well as in 'ballistic panspermia' scenarios related to the ejection of rocks from the surface of a planet, which could serve as transfer vehicles to spread the life between planets within a solar system. Studies analyzing the effects of hypergravity regimes are abundant in the literature, however, only a few researches carried out experiments using conditions of the order of 105 x g. In addition, the only plant species tested so far, as an entire structure instead of detached parts, exposed to gravity stress of this order of magnitude in its entirety was Oryza sativa, whose seeds were able to germinate after being exposed to 450,000 x g. Recently, our research group demonstrated that some free-living nematode species can support 400,000 x g. In the present study, we report that seeds of the plant model Nicotiana benthamiana exposed to 400,000 x g for 1h are able to germinate into fully normal young seedlings, with no apparent morphological alterations. Since N. benthamiana is used in laboratories worldwide and an easy to cultivate plant model, theoretical and experimental models of lithopanspermia and life in supermassive planets may benefit from it.

References

Bally P. J., Nakasugi K., Jia F., Jung H., Ho S. Y., Wong M., Paul C. M., Naim F., Wood C. C., Crowhurst R. N., Hellens R.P., Dale J. L., & Waterhouse P. M. (2015). The extremophile Nicotiana benthamiana has traded viral defence for early vigour. Nature Plants, 1, 15165. 10.1038/nplants.2015.165

Beams, H. W. (1949). Some effects of centrifuging upon protoplasmic streaming in Elodea. Biological Bulletin, 96, 246-256. 10.2307/1538359

Beams, H. W. & King, R. L. (1935). The effect of ultracentrifuging on the cells of the root tip of the bean (Phaseolus vulgaris). Proceedings of The Royal Society Series B-Biological Sciences, 118, 264-276. 10.1098/rspb.1935.0056

Bouck, G. B. (1963a). Stratification and subsequent behavior of plant cell organelles. Journal of Cell Biology, 18, 441-457. 10.1083/jcb.18.2.441

Bouck, G. B. (1963b). An examination of the effects of ultracentrifugation on the organelles in living root tip cells. American Journal of Botany, 50, 1046-1054. 10.2307/2439913

Deguchi, S., Shimoshige, H., Tsudome, M., Mukai, S., Corkery, R. W., Ito, S. & Horikoshi, K. (2011). Microbial growth at hyperaccelerations up to 403,627 x g. Proceedings of the National Academy of Sciences USA, 108, 7997-8002. 10.1073/pnas.1018027108

Dos Santos, M. A., Fachel, F. N., Nava, M. J., Astarita, L. V., Collin, P., Russomano, T. (2012) Effect of hypergravity simulation on carrot germination and growth. Aviat Space Environ Med, 83(10):1011-2. 10.3357/asem.3476.2012.

Faraoni, P., Sereni, E., Gnerucci, A., Cialdai, F., Monici, M., Ranaldi, F. (2019) Glyoxylate cycle activity in Pinus pinea seeds during germination in altered gravity conditions.Plant Physiology and Biochemistry, 139, 389-394.

Gao, Z., Lic, D., Menga, C., Xu, D., Zhang, X. & Ye, N. (2013). Survival and proliferation characteristics of the microalga Chlamydomonas sp. ICE-L after hypergravitational stress pretreatment. Icarus, 226, 971-979. 10.1016/j.icarus.2013.07.017

Kostoff, D. (1937). Chromosome alterations by centrifuging. Science, 86, 101. 10.1126/science.86.2222.101

Kostoff, D. (1938). The effect of centrifuging upon the germinated seeds from various plants. Cytologia, 8, 420-442. 10.1508/cytologia.8.420

Kwon, S. T., Kikuchi, S. & Oono, K. (1992a). Molecular-cloning and characterization of gravity specific cDNA in rice (Oryza sativa L) suspension callus. Japanese Journal of Genetics, 67, 335-348. 10.1266/jjg.67.335

Kwon, S. T. & Oono, K. (1992b). Gravity responsible protein and messenger-RNA related to the survival of rice (Oryza sativa L) from gravity stress. Japanese Journal of Genetics, 67, 321-334. 10.1266/jjg.67.321

Mastrapa, R. M. E., Glanzberg, H., Head, J. N., Melosh, H. J. & Nicholson, W. L. (2001). Survival of bacteria exposed to extreme acceleration: implications for panspermia. Earth and Planetary Science Letters, 189, 1-8. 10.1016/S0012-821X(01)00342-9

Melosh, H. J. (1984). Impact ejection, spallation, and the origin of meteorites. Icarus, 59, 234-260. 10.1016/0019-1035(84)90026-5

Melosh, H. J. (1993). Blasting rocks off planets. Nature, 363, 498-499.

Micheten, M. V. C.; & Pessenti, I. L. Extractos vegetales en el control de brevicoryne brassicae en brassicaceans. Research, Society and Development, 10, e57710313681. 10.33448/rsd-v10i3.13681.

Montgomery, P. O. B., Rosenblum, E. & Vanorden, F. (1963). A relationship between growth and gravity in bacteria. Aerospace Medicine, 34, 352-354.

Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. UFSM, <https://repositorio.ufsm.br/bitstream/handle/1/158 24/Lic_Computacao_Meto

dologiaPesquisa-Cientifica.pdf?sequence=1>.

Souza, T. A. J., Carli, G. J. & Pereira, T. C. (2017). Survival potential of the anhydrobiotic nematode Panagrolaimus superbus submitted to extreme abiotic stresses. Invertebrate Survival Journal, 14, 85-93. 10.25431/1824-307X/isj.v14i1.85-93

Souza, T. A. J. & Pereira, T. C. (2018). Caenorhabditis elegans tolerates hyperaccelerations up to 400,000 x g. Astrobiology, 18, 825-833. 10.1089/ast.2017.1802

Tada, A., Adachi, F., Kakizaki, T., & Inaba, T. (2014). Production of viable seeds from the seedling lethal mutant ppi2-2 lacking the atToc159 chloroplast protein import receptor using plastic containers, and characterization of the homozygous mutant progeny, Frontiers in Plant Science, 5, 243. 10.3389/fpls.2014.00243

Tamaoki, D., Karahara, I., Nishiuchi, T., Wakasugi, T., Yamada, K., & Kamisaka, S. (2014). Effects of hypergravity stimulus on global gene expression during reproductive growth in Arabidopsis. Plant Biol (Stuttg). 16 (1):179-86. 10.1111/plb.12124

Takemura, K., Kamachi, H., Kume, A., Fujita, T., Karahara, I., & Hanba, Y. T. (2017). A hypergravity environment increases chloroplast size, photosynthesis, and plant growth in the moss Physcomitrella patens. J Plant Res. 130 (1):181-192. 10.1007/s10265-016-0879-z. Epub 2016 Erratum in: J Plant Res. 2018, 131(5):887.

Waldron, K. W. & Brett, C. T. (1990). Effects of extreme acceleration on the germination, growth and cell-wall composition of pea epicotyls. Journal of Experimental Botany, 41, 71-77. 10.1093/jxb/41.1.71

Yoshida, N., Minamimura, T., Yoshida, T. & Ogawa, K. (1999). Effect of hypergravitational stress on microbial cell viability. Journal of Bioscience and Bioengineering, 88, 342-344. 10.1016/s1389-1723(00)80023-7

Downloads

Published

12/07/2021

How to Cite

SOUZA, T. A. J. de .; LUBINI, G. .; QUIAPIM, A. C. .; PEREIRA, T. C. . Nicotiana benthamiana seeds tolerate hyperaccelerations up to 400,000 x g . Research, Society and Development, [S. l.], v. 10, n. 8, p. e27510817323, 2021. DOI: 10.33448/rsd-v10i8.17323. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17323. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences