Performance characterization of Polylatic Acid (PLA) material manufactured by Fusion and Deposition Modeling (FDM) technology
DOI:
https://doi.org/10.33448/rsd-v10i8.17348Keywords:
Manufactured Materials; Printing, Three-Dimensional; Mechanical Processes; Mechanical phenomena.Abstract
The aim of this study was to characterize the performance of polylactic acid (PLA) material when manufactured by melt deposition modeling (FDM) technology. For the elaboration and organization of the experimental procedure, this study was constructed in accordance with the ASTM D3039/3039-95A standard, using a total of 36 specimens, modeled using Autodesk Inventor CAD software and later exported to CAM software Makerware, where parameters and processes for 3D printing were defined. The tensile tests were carried out on the EMIC DL 3000 machine, maintaining a standard condition with the laboratory at a temperature around 20°C. The values defined as significant for this study were: Maximum Tension; Breaking Stress and Modulus of Elasticity. The manufactured specimens showed anisotropic behavior. In the stress-strain tests, the ruptures occurred in perfect profile rupture. The stress-strain curves showed practically no yield area. The deposition rates of 100% for the X axis showed higher rates for tensile strength as opposed to the 20% deposition rates for the Y axis. With regard to elongation, the parts with 20% deposition rate on the X axis had higher rates. Mechanical properties, tensile strength and flexural strength, increased with filling. PLA, manufactured using the FDM process, demonstrated better mechanical performance when produced on an X axis with 100% deposition rates for the structural internal fill and an extrusion temperature of 200°C. It is characterized as a typical polymeric brittle.
References
Ahn, S. H., Montero, M., Odell, D., Roundy, S., & Wright, P. K. (2002). Anisotropic material properties of fused deposition modeling ABS. In Rapid Prototyping Journal (Vol. 8, Issue 4). https://doi.org/10.1108/13552540210441166
Alves, T. P., Jesus, A. V. S. De, Valverde, G., Ribeiro, R. R. M., Kívia, L., & Rodrigues, D. O. (2021). ANÁLISE DA INFLUÊNCIA DO PADRÃO DE PREENCHIMENTO E DA ALTURA DE CAMADA DE DEPOSIÇÃO NA TENSÃO DE RUPTURA DE CORPOS DE PROVA FABRICADOS EM POLI ÁCIDO LÁTICO (PLA) A PARTIR DE IMPRESSÃO 3D.
ASTM D303995a (1998). Standard test method for tensile properties of polymer matrix composite materials.
Azevedo, C. M. P. de, Godinho, L. H., Saraiva, M. A. L., Alvarenga, S. das D., & Ribeiro, M. V. A. de A. (2016). Ensaio Mecânico De Tensão-Deformação Sob Tração : UM ESTUDO INTEGRADO COM A DISCIPLINA DE CÁLCULO. Perspectivas Online: Exatas & Engenharia, 29–35.
Bagsik, A. (2011). MECHANICAL PROPERTIES OF FUSED DEPOSITION MODELING PARTS MANUFACTURED WITH ULTEM. 1294–1298.
Bellini, A., & Güçeri, S. (2003). Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyping Journal, 9(4), 252–264. https://doi.org/10.1108/13552540310489631
Camargo, J. C., Machado, Á. R., Almeida, E. C., & Silva, E. F. M. S. (2019). Mechanical properties of PLA-graphene filament for FDM 3D printing. International Journal of Advanced Manufacturing Technology, 103(5–8), 2423–2443. https://doi.org/10.1007/s00170-019-03532-5
Callister, Jr. (2013). Ciências e engenharia dos materias: uma introdução. (LTC (8 ed.))
Ghosh, S. B., Bandyopadhyay-Ghosh, S., & Sain, M. (2010). Composites. Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, 293–310. https://doi.org/10.1002/9780470649848.ch18
Heidari-Rarani, M., Rafiee-Afarani, M., & Zahedi, A. M. (2019). Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Composites Part B: Engineering, 175(October 2018), 107147. https://doi.org/10.1016/j.compositesb.2019.107147
Lopes, J. T. de B. (2011). Propriedades Dos Materiais: Diagramas Tensão-DEFORMAÇÃO. In Estrutura e Propriedades dos Materiais (pp. 126–161).
Lovo, J. F. P., & Fortulan, C. A. (2016). Estudo de propriedades mecânicas e anisotropia em peças fabricadas por manufatura aditiva tipo FDM. I Simpósio Do Programa de Pós-Graduação Em Engenharia Mecânica Da EESC-USP (SiPGEM/EESC-USP), 1, 2–8.
Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092
Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17–46. https://doi.org/10.1016/j.addr.2016.04.003
Navarro, R. F. (2018). Comportamento plástico e os efeitos do Envelhecimento sobre a tensão de escoamento. Revista Eletrônica de Materiais e Processos, 3, 170–176.
Pereira, A., Shitsuka, D., Parreira, F., & Shitsuka, R. (2018). Método Qualitativo, Quantitativo ou Quali-Quanti. In Metodologia da Pesquisa Científica. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.
Sai Chennakesava, P., & Yeole, S. (2014). Fused Deposition Modeling. July. https://doi.org/10.1201/9780203910795.ch8
Santana, L. (2019). Avaliação Das Capacidades Da Impressão 3D De Baixo Custo Na Fabricação De Snap-Fits: Uma Relação De Reconhecimento Usuário-Sistema De Impressão. International Journal of Structural Integrity, 1(2), 161–172.
Santana, L., Alves, J. L., Sabino Netto, A. da C., & Merlini, C. (2018). A comparative study between PETG and PLA for 3D printing through thermal, chemical and mechanical characterization. Revista Materia, 23(4). https://doi.org/10.1590/s1517-707620180004.0601
Torres, J., Cotelo, J., Karl, J., & Gordon, A. P. (2015). Mechanical property optimization of FDM PLA in shear with multiple objectives. Jom, 67(5), 1183–1193. https://doi.org/10.1007/s11837-015-1367-y
Volpato, N. (2017). Manufatura Aditiva: Tecnologias e aplicações na impressão 3D (Blucher (ed.); 1st ed.).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Rodolfo Ramos Castelo Branco; Ketinlly Yasmyne Nascimento Martins; Anna Kellssya Leite Filgueira; Eduardo Jorge Oliveira Valadares; Kátia Elizabete Galdino; Misael Elias de Morais; Maria das Gracas Ouriques Ramos; Núbia do Nascimento Martins; Khelvyn Yhasley Nascimento Martins; Jonh Kennedy Guedes Rodrigues
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.