Origami Workshop: A strategic resource for teaching Geometry
DOI:
https://doi.org/10.33448/rsd-v10i8.17423Keywords:
Fedathi Sequence; Origami; Geometry; DIMA.Abstract
This article is a descriptive-exploratory study of the experience report type and aims to present the results obtained in the workshop: “Origami, Geometry and Fun”, held at the VIII Dialogues of Mathematics with Pedagogy (DIMA). The methodological procedure of this workshop was based on the assumptions of the Fedathi Sequence (SF) methodology, based on its phases: Position taking, Maturation, Solution and Proof; and it took place through research in the classroom, using the observation of subjects and the application of an evaluative questionnaire as data collection techniques. As main results, it was observed that in the Taking of Position, with the proposed problem-situation, the participants, mainly students of the Pedagogy Course of the Faculty of Education of the Federal University of Ceará, had difficulties in identifying the geometric concepts in the Origami and that in the Proof phase, it was found that the making of cube-shaped origami was crucial for the understanding of the geometric concepts worked. It appeared that the objective of the workshop was achieved, considering that the participants understood the relationship between the forms produced in Origami and the teaching of Geometry, in addition, they felt interested in using this technique during their practices in classroom.
References
Amaral-schio, R. B. (2018). Livro Didático de Ensino Médio, Geometria e a presença das Tecnologias. Renote, 16(2). https://www.seer.ufrgs.br/renote/article/view/89217
Appolinário, F. (2012). Metodologia da Ciência: filosofia e prática da pesquisa. (2a ed.), Cengage Learning.
Bettin, A. D. H., & Pretto, V. (2017, May). O Origami no ensino e aprendizagem de matemática. In VII Congresso Internacional de Educação-Educação Humanizadora: valorizando a vida na sociedade contemporânea. 1(1), 1.
Borges Neto, H. & Santos, M. J. C. (2006). O desconhecido das operações concretas e os números fracionários. In: Vasconcelos, J.G; Soares, E. L.R. & Carneiro, I. M. S. P. (orgs.). Entre tantos: diversidade na pesquisa educacional. Fortaleza: Editora UFC, 190-199.
Brasil. Base Nacional Comum Curricular. (2018). Versão final. Brasília: Ministério da Educação.http://basenacionalcomum.mec.gov.br/images/BNC C_EI_EF_110518_versaofinal_site.pdf
Daltro, M. R. & Faria, A. A. (2019). Relato de experiência: Uma narrativa científica na pós-modernidade. Estudos e Pesquisa em Psicologia, Rio de Janeiro, v.19, n.1. p. 223-237. https://www.e-publicacoes.uerj.br/index.php/revispsi/article/view/43015/29726
Dias, C. De F.; Vebber, G. C. & Fronza, J. (2019). Experimentação do origami no ensino da geometria. REMAT: Revista Eletrônica da Matemática, 5(2), 108-122. https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/3392
Fazenda, I. (2015). Interdisciplinaridade: Didática e Prática de Ensino. Interdisciplinaridade. Revista do Grupo de Estudos e Pesquisa em Interdisciplinaridade. ISSN 2179-0094, 0(6), 9-17. https://revistas.pucsp.br/index.php/interdisciplinaridade/article/view/22623
Freitas, A. C. (2016) ORIGAMI: O uso como instrumento alternativo no ensino da geometria. Dissertação. UNESP São José do Rio Preto SP 59f.
Menezes, E. N.; Bezerra, F.A.L. & Santos, M.J.C. (2020). IX DIMA on-line: uma experiência exitosa em período de pandemia. Olhar de professor, Ponta Grossa, 23, 1-6, e-.16139.209209228231.0715, https://www..org/jatsRepo/684/68464195040/68464195040.pdf
Pavanello, M. R. (1993). O abandono do ensino de geometria no Brasil: causas e consequências. Revista Zetetiké. Ano I - nº 1. https://periodicos.sbu.unicamp.br/ojs/index.php/zetetike/article/view/8646822/13724
Piaget, J. (1978). Psicologia e epistemologia por uma teoria do conhecimento. (2a ed.), Forense Universitária.
Pinheiro, A.C.M & Pinheiro, T.S.M. (2017). Proposta Metodológica do uso do Ambiente Computacional como Recurso Didático para o ensino de Conceitos Matemáticos. In Borges Neto, H. (Org.). Sequência Fedathi no ensino de Matemática. Vol.1, Coleção Sequência Fedathi, Curitiba, Editora CRV.
Pires, C. M. C.; Curi, E. & Campos, T. M. M. (2000). Espaço e forma: a construção de noções geométricas. PROEM,
Rancan, G. (2011). Origami e tecnologia: investigando possibilidades para ensinar geometria no ensino fundamental. Dissertação. Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre. https://repositorio.pucrs.br/dspace/bitstream/10923/3101/1/000436223-Texto+Completo-0.pdf
Rodrigues, M. & Bernardo, (2011). M. Ensino e Aprendizagem de Geometria. Anais do XXII SIEM. p. 339-344.
Santos, M. J. C. (2007). Reaprender Frações Por Meio de Oficinas Pedagógicas: Desafio Para a Formação Inicial. 2007. 90 f. Dissertação (Mestrado em Educação) – Faculdade de Educação, Universidade Federal do Ceará, Fortaleza.
Silva, C. (2016) Ciência e Arte: O origami no ensino da geometria: uma experiência interdisciplinar com alunos brasileiros no Japão in T., Pereira, A., A. Almeida, N., Vieira, M., C. Loureiro. Atas do VII Encontro do CIED – II Encontro Internacional, Estética e Arte em Educação. (460-471) Lisboa: CIED – Centro Interdisciplinar de Estudos Educacionais.
Silva, C. (2015). A formação de Pedagogo para o Ensino da Matemática nos anos iniciais do Ensino Fundamental: reflexões dedutiva e epistemológica. XIV CIAEM-IACME, México, http://xiv.ciaem-redumate.org/index.php/xiv_ciaem/xiv_ciaem/paper/viewFile/1379/530
Silva, C. (2017). A formação do professor de matemática: metodologia Sequência fedathi(sf). Revista Lusófona de Educação, 38, 81-96 81 10.24140/issn.1645-7250.rle 38.05. https://revistas.ulusofona.pt/index.php/rleducacao/article/view/6261#:~:text=Este%20trabalho%20tem%20como%20ob jetivo,de%20ensino%20municipal%20e%20estadual.
Sousa, F. E. E. (2015). A pergunta como estratégia de mediação didática no ensino de Matemática por meio da Sequência Fedathi. 2015. 282p. Tese (Doutorado em Educação) – Faculdade de Educação, Universidade Federal do Ceará, Fortaleza.
Sousa, F. E. E. (2017). A pergunta como mediação. In: Borges Neto, H. (org.). Sequência Fedathi no ensino da matemática. Curitiba: CRV, 95 a 112.
Souza, M. J. A. (2013). Sequência Fedathi: apresentação e caracterização. In. Sousa, F. E. E. et al. (Org.). Sequência Fedathi: uma proposta pedagógica para o ensino de Ciências e Matemática. Fortaleza: Edições UFC.
Xavier, A. R. Barbosa, M. K. R., Muniz, K. R. de A., Andrade, F. A. de, Santana, J. R., Vasconcelos, J. G., Scipião, L. R. de N. P., Carvalho, E. de F. G. de, Ferreira, A. D., & Santos, M. J. C. dos. (2021). Saberes populares, Etnomatemática e o uso de Jogos no ensino de Geometria. Research, Society and Development, 10(1), e50910111998. https://doi.org/10.33448/rsd-v10i1.11998.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Arnaldo Dias Ferreira; Elaine de Farias Giffoni de Carvalho; Lara Ronise de Negreiros Pinto Scipião; Francisco Régis Vieira Alves; Maria José Costa dos Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.